Spectroscopy of Element 115 Decay Chains

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.111.112502

2013

Link to publication

Citation for published version (APA):

Total number of authors: 51

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 12. Dec. 2020
This is an author produced version including the original article published in
The Physical Review Letters

This paper has been peer-reviewed.

Citation for the published paper:
Author: D. Rudolph et al.
Title: Spectroscopy of Element 115 Decay Chains

DOI: 10.1103/PhysRevLett.111.112502

Access to the published version may require subscription.
Spectroscopy of Element 115 Decay Chains

D. Rudolph,¹,⁶ U. Forsberg,¹ P. Golubev,¹ L. G. Sarmiento,¹ A. Yakushev,² L.-L. Andersson,³ A. Di Nitto,⁴ Ch. E. Düllmann,²,³,⁴ J. M. Gates,³ K. E. Gregorich,⁵ C. J. Gross,⁶ F. P. Heßberger,²,³ R.-D. Herzberg,⁷ J. Khuyagbaatar,³ J. V. Kratz,⁴ K. Rykaczewski,⁶ M. Schädel,²,⁸ S. Åberg,¹ D. Ackermann,² M. Block,² H. Brand,² B. G. Carlsson,¹ D. Cox,² X. Derkx,³,⁴ K. Eberhardt,³,⁴ J. Even,¹ C. Faulkner,¹ J. Gerl,² E. Jäger,² B. Kindler,² J. Krier,² I. Kojouharov,² N. Kurz,² B. Lommler,² A. Mistry,⁶ C. Mokry,³,⁴ H. Nitsche,² J. P. Omveldt,³ P. Papadakis,⁷ I. Ragnarsson,¹ J. Runke,² H. Schaffner,² B. Schausten,² P. Thörle-Pospiech,³,⁴ T. Torres,² T. Traut,⁴ N. Trautmann,⁴ A. Türler,¹ A. Ward,⁷ D. E. Ward,¹ and N. Wiehl³,⁴

¹Lund University, 22100 Lund, Sweden
²GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
³Helmholtz Institute Mainz, 55099 Mainz, Germany
⁴Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
⁵Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
⁶Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
⁷University of Liverpool, Liverpool L69 7ZE, United Kingdom
⁸Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
⁹University of Oslo, 0315 Oslo, Norway
¹⁰Paul Scherrer Institute and University of Bern, 5232 Villigen, Switzerland

(Received 11 June 2013; published 10 September 2013)

A high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction ⁴⁸Ca + ²⁴³Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z = 115. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z > 112. Comprehensive Monte Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

DOI: 10.1103/PhysRevLett.111.112502
PACS numbers: 21.10.–k, 23.20.Lv, 23.60.+c, 27.90.+b

Citius, altius, fortius.—The Olympic motto translated to the nuclear landscape calls for the quest of new isotopes at its outskirts, which is particularly true at its upper end: here, the first observation of a new isotope may imply the specifically rewarding first observation of a new chemical element.

During the past decade, a number of correlated α-decay chains, which all terminate by spontaneous fission, have been observed in several experiments using ⁴⁸Ca-induced fusion-evaporation reactions on actinide targets [¹,²]. The collaborations working at the Flerov Laboratory of Nuclear Reactions (FLNR) in Dubna, Russia, interpret these to originate from the production of isotopes with proton numbers Z = 112–118 [³].

In recent years, decay chains consistent with even-Z data from FLNR were independently observed [⁴–¹⁰]. In 2011, the discovery of elements Z = 114 (flerovium) and Z = 116 (livermorium) was acknowledged [¹¹]. However, assignments of Z and mass numbers A of these superheavy elements rely on indirect techniques, such as measurements of excitation functions, cross bombardments, or α-decay systemsatics, which all depend largely on nuclear mass models. Additional evidence—eventually direct or independent—for Z and A is being requested for claims on elements Z = 113, 115, 117, and 118 [¹¹].

Alpha decay of odd-A or odd-odd nuclei typically proceeds to excited states in the daughter nucleus, because unpaired nucleons tend to remain in the same single-particle orbitals as in the α-decay parent [¹²]. Observation of electromagnetic decays from these excited states can thus elucidate the low-lying nuclear structure of the daughter [¹³]. Electromagnetic decay into lower-lying states can also proceed by internal conversion, and following the emission of the conversion electron from the atom, x-ray emission is by far the most likely process in the atomic deexcitation. The energy of characteristic (Kα, Kβ, and Kγ) x rays is one direct measure of Z [¹⁴]. These energies are predicted with high accuracy (e.g., Refs. [¹⁵–¹⁸]) and are consistent with experimental data existing up to Db (Z = 105) [¹⁹]. The atomic number of rutherfordium (Z = 104) was determined by x-ray spectroscopy in the early 1970s [²⁰].

Here we report on the first such nuclear spectroscopy experiment and x-ray fingerprinting attempt along α-decay chains anticipated to start from element Z = 115.

The Universal Linear Accelerator at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany, provided typically 6 × 10¹² ⁴⁸Ca⁺ ions per sec (time averaged over its pulsed structure, 5 ms beam on and 15 ms beam off) at energies of 5.400 and 5.462 MeV/u.
The beam impinging on a rotating target wheel, which comprised four target segments averaged 0.83(1) mg/cm² 243Am$_2$O$_3$. At Mainz University, the 243Am material from Oak Ridge was electron-plate onto 2.05(5) μm thick titanium backing foils. These foils faced the beam, which implies midtarget beam energies of 242.1 and 245.0 MeV. Beam integrals of 2.13(12) and 3.89(23) × 1010 48Ca ions were collected, respectively.

The target wheel was positioned at the entrance of the recoil separator TASCA [9,21,22], filled with He gas at a pressure of $p_{\text{He}} = 0.8$ mbar [23]. For the majority portion of the experiment, TASCA was set to center ions in the focal plane with a magnetic rigidity of $B\rho = 2.21$ Tm. These ions entered the multicoincidence spectroscopy setup TASISpec [24]. Based on earlier in-beam calibrations and simulations, the efficiency for element Z = 115 fusion-evaporation residues was estimated to 30(3)% [25,26].

TASISpec comprises a 32 × 32-strip double-sided silicon strip detector (DSSSD), 6 × 6 cm² in area and 0.52 mm thick. A cubelike detector arrangement is formed by four additional 16 × 16-strip DSSSDs of the same size and placed upstream. The 96 preamplified signals from the n-doped sides of the DSSSDs were processed with standard electronics [24], while 70-μs long traces of the preamplified signals of all p-doped sides, which are most relevant for high-resolution spectroscopy, were digitized by 60 MHz, 12-bit sampling ADCs. Five composite germanium detectors were placed closely behind each of the five DSSSDs. Their signals were handled by 100-MHz, 16-bit sampling ADCs. Baseline and flat-top times and energy were recorded, eventually flagged with pileup recognition.

List mode data were triggered generated by a coincident signal from a p-side and n-side strip of the implantation detector, the latter limiting the trigger threshold to some 500 keV energy deposited. Trigger rates were typically 100–120 events per sec. Beam on-off status and irradiated target segment number were recorded. Upon detection of an 8.5–11.0 MeV particle in the implantation DSSSD during beam-off periods, the 48Ca beam was chopped within <20 μs for a period Δt_1. If within Δt_1 another event occurred in the same detector strip at time t_2, the beam-off period was extended for a period Δt_2 starting at $t = t_2$. Pairs of ($\Delta t_1, \Delta t_2$) = (5, 30) s, (20, 40) s, and (20, 60) s were used.

During the offline data analysis, emphasis has been put on spectroscopic precision. To name but a few, this includes individually optimized preamplifier decay constants for the moving-window algorithm of the sampled DSSSD pulses, self-consistent pixel-by-pixel determination of DSSSD dead layer thicknesses based on electron and α source data as well as known α-decay energies and Q_α values of background radiation from transfer reaction products. More details can be found in Ref. [27].

A search for time- and position-correlated recoil-α-α and recoil-α-fission sequences was conducted using

(i) $12.0 < E_{\text{rec}} < 18.0$ MeV, beam on;
(ii) $9.0 < E_{\alpha 1} < 12.0$ MeV, $\Delta t_{\alpha 1} = 5$ s, beam off, or $10.0 < E_{\alpha 1} < 12.0$ MeV, $\Delta t_{\alpha 1} = 1$ s, beam on;
(iii) $9.0 < E_{\alpha 2} < 11.0$ MeV, $\Delta t_{\alpha 1+\alpha 2} = 20$ s, beam off, or $9.5 < E_{\alpha 2} < 11.0$ MeV, $\Delta t_{\alpha 1+\alpha 2} = 5$ s, beam on;
(iv) $E_{\text{SF}} > 120$ MeV, $\Delta t_{\alpha 1+\alpha 2} = 30$ s, beam off.

During beam-off and background measurement periods 64 fission events occurred. Most of these were correlated with one of the thirty α-decay chains found via the search algorithm, or associated with short-lived recoil-fission events of transfer reaction products such as 242Am.

The thirty identified chains contain five recoil-α-α-fission and two recoil-α-fission events, which are compatible with decay chains proposed to originate from either 289115 or 288115 [27,28]. One five-α long chain displayed as chain 23 on the right-hand side of Fig. 1 is clearly compatible with the characteristics of the decay chain attributed to start from the isotope 287115 [28,29]. None of these chains had Ge-detector events in prompt coincidence with α decays. The applied two-dimensional prompt coincidence window is shown on the upper left of Fig. 2.

![FIG. 1 (color online). Correlated decay chains of 287,288115 of the present work compared with Ref. [28]. Individual chains are labeled with an identification number, beam energy at midtarget, and a pixel identifier of the implantation detector. Decay energies are in MeV and times in seconds. Uncertainties of 0.01 MeV for single measurements imply full-energy detection in the implantation DSSSD, otherwise the energy was reconstructed from coincidences in the implantation and one box DSSSD. Cases marked “escape” denote events with low-energy detection solely in the implantation DSSSD. Numbers with uncertainties inside the yellow squares relate to photon energies detected in prompt coincidence with the respective α-decay mother. Black triangles indicate detection during beam-off periods.](112502-2)
The remaining 22 chains are fully or in significant portions compatible with the 31 chains previously assigned to the decay of $^{288}\text{115}$ [28,29]. Figure 1 compares averaged values reported from FLNR [28] with our values, shown together with three selected chains, which are considered most relevant for the construction of decay schemes and x-ray fingerprinting. A table with detailed information on our results is available as Supplemental Material [30]. For a comprehensive assessment, see Ref. [27].

The left column of Fig. 2 provides five energy spectra taken with the DSSSD cube in the energy range of interest. They comprise both full-energy and reconstructed events (cf. caption Fig. 1) of the respective step in the α-decay chains, starting with $^{288}\text{115}$.

The topmost spectrum of the right column shows the total number of counts in all Ge-detector crystals during beam-off periods ($t_{\text{beam-off}} = 1.10 \times 10^6$ s) taken in prompt coincidence with events at any energy detected above threshold in the implantation DSSSD. It has $N_y = 8.0 \times 10^6$ data points in the displayed energy range, dominated by the 511-keV $e^+ e^-$ annihilation peak. The remaining five spectra in the right column provide Ge-detector spectra taken in prompt coincidence with the corresponding, firmly established α decays along the chains. These spectra have 1, 1, 6, 8, and 0 counts, respectively. For a given pixel, e.g., No. 465 from chain 1 (cf. Fig. 1), and escape-like energies, $0.5 < E_{\text{Si}} < 2.0 \text{ MeV}$, the corresponding prompt Ge-detector spectrum has 5620 events, i.e., a coincidence rate of about 1 in 200 s during beam-off periods. Selecting detected full-energy and reconstructed α particles instead, $8.0 < E_{\text{Si}} < 12.0 \text{ MeV}$, these numbers reduce to four counts, hence 1 such coincidence per 75 h. The expected low random rate is nicely corroborated by the absence of 511-keV events in any of the five spectra of interest. Nevertheless, there is a finite probability of 10%–15% for random α-photon coincidences [27], corresponding to about 2 of the 16 photon events in Fig. 2. Another random photon may arise from an unrelated escape-like event possibly being assigned as a true member to any of the present 22 chains (cf. the Supplemental Material [27,30]).

Only recently, realistic GEANT4 Monte Carlo simulations have been introduced to support conclusions drawn from experimental data on heavy nuclei [31]. To start with, the simulations provide proper implantation profiles of the ions of interest, followed by tracking recoil and decay energies. They account for transition probabilities of nuclear and atomic deexcitations, including emission and detection of α particles, γ rays, conversion electrons, x rays, and Auger electrons. In particular, possible energy summing of interactions of different types of decay radiation within a given active detector element of the setup is handled properly.

Assuming production and decay of $^{288}\text{115}$, the chains of 10^5 ions implanted into a virtual TASISpec [32] were simulated. The decay schemes of the isotopes along the chain are the physics input (cf. Fig. 3). The output is organized such that it produces list mode data, i.e., energy and time of hits in a given TASISpec detector element. This data set was sent through the same offline analysis codes as used for the calibrated experimental data. The simulated energy spectra are displayed by smooth curves in the lower five rows of Fig. 2. One common normalization factor is used for all simulated energy spectra, such that the ratio between the number of counts in simulated and measured α-decay spectra is on average 2.

![Image](https://example.com/image.png)
The broad distribution of α-decay energies and the half-life of $^{288}115$ are compatible with Ref. [28]. To explain this distribution and the possible photon event, the simulation of the $^{288}115$ decay suffices with one α-decay branch of $E_\alpha = 10.30(1)$ MeV to an excited state, which cascades down towards the ground state of $^{284}113$ via a few highly converted γ-transitions with energies below the $Z = 113 K$-binding energy. This implies summing of α decay and one or more conversion or Auger electron energies.

The simulation suggests $Q_\alpha = 10.7$ MeV. From all known detected chains $T_{1/2} = 0.16(3)$ s is derived. The decay pattern of $^{284}113$ is very similar, leading to $Q_\alpha = 10.3$ MeV and $T_{1/2} = 0.92(16)$ s.

The α-decay results of ^{280}Rg agree with Ref. [28]. The photon spectrum associated with ^{276}Mt contains two counts below the K-shell binding energy of Mt, and two each at 194 and 237 keV. All six are in coincidence with full-energy α events. This leads to the decay scheme proposed in Fig. 3(a): A single $E_\alpha = 9.77(1)$-MeV line populates an excited state at 237 keV in ^{276}Mt, which emits $E1$ transitions of 194 and 237 keV with about the same probability. The absence of K-γ rays in the Ge-detector spectrum calls for the $E1$ assignment of the two transitions based on low total conversion coefficients of $\alpha_{tot} = 0.1$ [33], while the 194-keV decay is followed by a possibly delayed, but certainly highly converted 43-keV transition. The simulations based on these premises are compatible with both energy spectra of this decay step (green curves). Properly normalized, they also suggest 2.9 Compton-scattered and 0.4 K-ray events in the photon energy regime 20–180 keV. A simulation assuming $M1$ multipolarity of the γ rays fails to reproduce the observed photon spectrum (red curve).

The decay scheme of ^{276}Mt in Fig. 3(b) features two α-decay lines followed by a more complex γ-ray decay scheme, including the opportunity for observing Bh K-γ rays. Chains 16 and 20 displayed in Fig. 1 establish two branches and $Q_\alpha = 10.10(1)$ MeV. A second count at 362(1) keV in the photon spectrum of ^{272}Bh is coincident with an escape event, which is properly embedded between mother and daughter decays. Similarly, the escape event in chain 1 is also firmly attributed to the decay of ^{276}Mt (cf. Fig. 1). It is coincident with two Ge-detector entries at 136 and 167 keV, which are consistent with $Z = 107 K_{\alpha2}$ and K_{β} energies, respectively [16,17]. It is noteworthy that no other Z assignment would generate two coincident K-γ rays at these energies. However, either one or both of them can also represent γ rays or Compton scattered or background events.

Assuming the observation of two coincident photons implies γ-decay cascades parallel to the 362 and 434-keV transitions. From chain 5, an $E_\alpha = 9.65(1)$ MeV, $E_\gamma = 232(1)$-keV coincidence suggests a tentative state at 232 keV, which may connect to the 362 and 434-keV levels via 130 and 202-keV transitions. The latter gives rise to a possible cascade of two K-converted $M1$ transitions. Besides missing counts at the $K_{\alpha1}$ energy, the normalized spectra of the simulation based on the partially tentative ^{272}Bh decay scheme in Fig. 3(b) are compatible with the corresponding energy spectra in Fig. 2. The two possible Compton events of multiplicity one at 172 and 303 keV are in line with expected 2.4 Compton scattered events in the range $E_\gamma = [170, 350]$ keV. Note that 303 = 136 + 167 or 303 = 144 + 160, i.e., the sum of two Bh K-γ rays. Though detected in the Ge detector closest to the pixel in which the chain was observed, the simulation shows no enhancement at that energy; i.e., most likely it indeed represents a Compton scattered photon.

The energy spectrum and half-life of ^{272}Bh match with Ref. [28]. A distinct peak is observed, together with a distribution of α-decay energies towards lower energies. A simulation based on a 75% $E_\alpha = 9.07(1)$ MeV ground state to ground-state decay and a 25% $E_\alpha = 8.93(1)$ MeV decay into an excited state at $E_\gamma = 140$ keV, which decays by a 140 keV $M1$ or $E2$ transition, provides a nearly perfect description of the experimentally observed pattern. The simulated γ-ray yield is marginal and compatible with an empty Ge-detector spectrum. This interpretation yields $Q_\alpha = 9.21(1)$ MeV. A half-life $T_{1/2} = 10.9(15)$ s is derived from all available data points.

Many nuclear structure models (e.g., Refs. [34–36]) predict a shape change from near sphericity ($Z = 115$ and 113) towards pronounced prolate deformation of $\beta_z = e_2 = 0.2$ (Mt, Bh, Db). Directly inferred experimental Q_α values provide a profound testing ground for the models along the complete $^{288}115$ α-decay chain [27]. Hindrance factors (cf. Fig. 3) point toward favored α decays along the chain. Interestingly, at the above mentioned deformation, there is only one pair each of proton and neutron Nilsson single-particle orbitals near the Fermi surface that could generate the $E1$ transitions observed in ^{276}Mt. For instance, an excited $[716]13/2^- \otimes [521]1/2^+$ state can couple to the $[606]11/2^+ \otimes [521]1/2^-$, $I^\pi = 5^-$, 6^- doublet. In such a scenario, the odd $\pi[521]1/2$ proton
continues to act as a spectator in the decay to 272Bh. Here, the up-sloping neutron orbitals $\nu [606]_{11/2}$ and $\nu [604]_{9/2}$ stemming from the $g_{9/2}$ and $i_{11/2}$ shells, are close to the $\nu [613]_{5/2}$ orbital linked to the $d_{5/2}$ shell. Transitions between these orbitals can explain the proposed γ-decay scheme of 272Bh.

In conclusion, thirty correlated α-decay chains were observed following the reaction 48Ca + 241Am. Decay schemes arising from high-resolution spectroscopic coincidence data, in conjunction with comprehensive Monte Carlo simulations, open the door for direct nuclear structure insights of these heaviest man-made atomic nuclei. Previous assignments linking the majority of the decay chains to the decay to 287Bh are confirmed. This includes first candidates for Z fingerprinting the decay of M by means of characteristic K-x ray detection. There is clearly potential for direct determination of the atomic number of the descendants of superheavy elements.

The authors would like to thank the ion-source and the accelerator staff at GSI. This work is supported by the European Community FP7—Capacities ENSAR No. 262010, the Royal Physiographic Society in Lund, the Office of Nuclear Physics, U.S. Department of Energy, and the UK Science and Technology Facilities Council.

*Dirk.Rudolph@nuclear.lu.se

[27] U. Forsberg et al. (to be published).
[37] The long-lived α decays assigned to 276Mt in chains 10 and 23 in Table II in Ref. [28] can be unambiguously transferred to 272Bh and 280Rg as well, which puts the proposed 6γ decay branch of 276Mt into doubt. Our combined correlation-time analysis of only one half-life excludes these two numbers.
TABLE I: (Supplemental material) Energies of the implanted recoils E_{rec}, α energies E_α measured with the silicon detectors, photon – i.e., γ-ray or X-ray – energies E_{ph}, detected in the Ge-detector crystals in prompt coincidence with particle decays, and spontaneous fission energies E_{SF}, together with the associated correlation times of decay chains attributed to the decay of $^{288}\text{I}^{155}$ (Nos. 1 to 22) and $^{287}\text{I}^{155}$ (No. 23) at the two mid-target laboratory-frame beam energies of 242.1 MeV (Nos. 1 to 8) and 245.0 MeV (Nos. 9 to 23). Entries in bold were recorded during beam-off periods. Entries in italic relate to tentative or insecure assignments, often in connection to a missing α-decay event in a chain. These entries are thus not part of the spectra displayed in Fig. 1. Uncertainties of individual energy measurements are 10 keV or better at typical α-decay energies of 10 MeV in the implantation DSSSD, worsened for reconstructed events including DSSSD box detectors due to the energy straggling in the deadlayers of the Si detectors. The full width at half maximum (FWHM) for α-decay lines are FWHM = 25 keV at 7.5 MeV and 33 keV at 11.8 MeV for the total DSSSD spectrum. The corresponding numbers are 1 keV and a FWHM = 2 keV for Ge-detector entries in the relevant energy range up to 500 keV.

<table>
<thead>
<tr>
<th>No.</th>
<th>E_{rec} (MeV)</th>
<th>$E_{\alpha 1}$ (MeV)</th>
<th>$E_{\alpha 2}$ (MeV)</th>
<th>$E_{\alpha 3}$ (MeV)</th>
<th>$E_{\alpha 4}$ (MeV)</th>
<th>$E_{\alpha 5}$ (MeV)</th>
<th>E_{SF} (MeV)</th>
<th>γ-ray fold</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel (x,y)</td>
<td>$\Delta t_{\alpha 1}$ (s)</td>
<td>$\Delta t_{\alpha 2}$ (s)</td>
<td>$\Delta t_{\alpha 3}$ (s)</td>
<td>$\Delta t_{\alpha 4}$ (s)</td>
<td>$\Delta t_{\alpha 5}$ (s)</td>
<td>Δt_{SF} (s)</td>
<td>E_{ph} (keV)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13.4</td>
<td>10.29(1)</td>
<td>9.24(1)</td>
<td>9.77(1)</td>
<td>0.825(3)a</td>
<td>9.06(1)</td>
<td>197b</td>
<td></td>
</tr>
<tr>
<td>(14,17)</td>
<td></td>
<td>0.366</td>
<td>0.935</td>
<td>11.1</td>
<td>0.515</td>
<td>15.3</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13.9</td>
<td>10.48(1)</td>
<td>10.00(1)</td>
<td>missing and 0.936(3)a</td>
<td>9.07(1)</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(23,12)</td>
<td></td>
<td>0.177</td>
<td>1.18</td>
<td>4.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16.3</td>
<td>9.99(1)</td>
<td>9.77(1)</td>
<td>9.60(1)</td>
<td>9.04(1)</td>
<td>233b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(17,13)</td>
<td></td>
<td>0.240</td>
<td>18.0</td>
<td>0.600</td>
<td>2.70</td>
<td>39.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16.1</td>
<td>10.37(4)c</td>
<td>9.99(1)</td>
<td>9.5(3)d</td>
<td>9.65(1)</td>
<td>9.05(4)c</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>(22,12)</td>
<td></td>
<td>0.212</td>
<td>1.50</td>
<td>26.4</td>
<td>8.95</td>
<td>17.8</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16.4</td>
<td>10.44(4)c</td>
<td>10.00(6)e</td>
<td>9.76(1)</td>
<td>9.65(1)</td>
<td>8.55(1)e</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>(10,11)</td>
<td></td>
<td>0.363</td>
<td>0.242</td>
<td>11.3</td>
<td>0.539</td>
<td>29.8</td>
<td>48.9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15.4</td>
<td>> 3f</td>
<td>9.85(5)e</td>
<td>several optionsg</td>
<td>9.06(1)</td>
<td>189b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(19,13)</td>
<td></td>
<td>0.653</td>
<td>1.01</td>
<td></td>
<td>(see Ref. [27])</td>
<td>52.6</td>
<td>79.7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14.1</td>
<td>10.48(4)c</td>
<td>9.94(4)c</td>
<td>1.38(1)a</td>
<td>9.60(1)</td>
<td>9.06(5)c</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>(11,16)</td>
<td></td>
<td>0.0633</td>
<td>3.30</td>
<td>8.21</td>
<td>0.0550</td>
<td>8.95</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12.5</td>
<td>0.609(3)a</td>
<td>9.96(1)</td>
<td>9.75(1)</td>
<td>several optionsj</td>
<td></td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>(6,8)</td>
<td></td>
<td>0.545</td>
<td>2.40</td>
<td>19.1</td>
<td></td>
<td>(see Ref. [27])</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15.9</td>
<td>10.38(1)</td>
<td>9.96(1)</td>
<td>several optionsj</td>
<td></td>
<td></td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>(1,6)</td>
<td></td>
<td>0.152</td>
<td>2.00</td>
<td></td>
<td></td>
<td>(see Ref. [27])</td>
<td>0.905</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14.5</td>
<td>1.66(1)a</td>
<td>9.84(5)e</td>
<td>1.28(1)a</td>
<td>9.68(4)c</td>
<td>8.97(5)e</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>(31,15)</td>
<td></td>
<td>0.0702</td>
<td>3.08</td>
<td>1.56</td>
<td>0.371</td>
<td>24.5</td>
<td>95.6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>16.5</td>
<td>10.34(1)</td>
<td>9.99(1)</td>
<td>9.81(1)</td>
<td>9.54(5)c</td>
<td>9.08(1)</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>(2,26)</td>
<td></td>
<td>0.0404</td>
<td>0.103</td>
<td>6.81</td>
<td>0.242</td>
<td>39.9</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15.1</td>
<td>10.56(1)</td>
<td>9.93(4)c</td>
<td>9.77(2)</td>
<td>0.903a</td>
<td>8.93(1)</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>(1,12)</td>
<td></td>
<td>0.293</td>
<td>0.687</td>
<td>14.2</td>
<td>0.232</td>
<td>19.0</td>
<td>22.7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>15.3</td>
<td>3.68(1)a,k</td>
<td>9.88(5)c</td>
<td>9.78(2)</td>
<td>9.43(2)</td>
<td>9.04(1)</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>(6,18)</td>
<td></td>
<td>0.0611</td>
<td>0.326</td>
<td>0.561</td>
<td>0.652</td>
<td>5.11</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14.9</td>
<td>10.52(4)c</td>
<td>10.11(1)</td>
<td>several optionsj</td>
<td>9.09(4)c</td>
<td></td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>(14,17)</td>
<td></td>
<td>0.203</td>
<td>0.327</td>
<td></td>
<td>(see Ref. [27])</td>
<td>47.1</td>
<td>25.3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>17.2</td>
<td>10.42(1)</td>
<td>9.96(1)</td>
<td>9.75(1)</td>
<td>9.87(1)</td>
<td>9.07(1)</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>(5,20)</td>
<td></td>
<td>0.437</td>
<td>0.965</td>
<td>11.4</td>
<td>1.69</td>
<td>4.05</td>
<td>134.4</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>287115 & 283113 & 279Rg & 275Mt & 271Bh & 267Db</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>12.6</td>
<td>9.10,(1)</td>
<td>9.77,(1)</td>
<td>9.60,(1)</td>
<td>9.07,(1)</td>
<td>210b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>203</td>
<td>0.159</td>
<td>0.179</td>
<td>11.6</td>
<td>0.607</td>
<td>3.35</td>
<td>64.1</td>
<td></td>
</tr>
<tr>
<td>(6.11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>16.3 c</td>
<td>10.04(5) c</td>
<td>9.78(1) c</td>
<td>several optionsm</td>
<td>207 b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>784</td>
<td>0.0649</td>
<td>0.699</td>
<td>4.04</td>
<td></td>
<td>66.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(24.16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>14.4 c</td>
<td>6.37(1) a</td>
<td>9.77(1) c</td>
<td>9.25(5) c</td>
<td>9.58(1) c</td>
<td>8.96(4) c</td>
<td>216 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>0.104</td>
<td>1.89</td>
<td>6.59</td>
<td>0.419</td>
<td>0.702</td>
<td>42.3</td>
<td></td>
</tr>
<tr>
<td>(7.12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>14.9 c</td>
<td>10.51(4) c</td>
<td>10.00(1) c</td>
<td>9.75(1) c</td>
<td>9.89(1) c</td>
<td>9.06(4) c</td>
<td>224 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>623</td>
<td>0.0400</td>
<td>0.218</td>
<td>3.13</td>
<td>0.273</td>
<td>15.7</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>(19.15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>15.0</td>
<td>10.30(1)</td>
<td>9.97(1)</td>
<td>9.77(1)</td>
<td>9.53(1)</td>
<td>8.86(5) c</td>
<td>275 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>842</td>
<td>0.0614</td>
<td>1.12</td>
<td>3.21</td>
<td>0.702</td>
<td>11.8</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>(26.10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>15.1</td>
<td>10.54(1) d</td>
<td>missingg</td>
<td>9.92(1)</td>
<td>9.61(1)</td>
<td>several optionsg</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>0.114</td>
<td></td>
<td>9.18</td>
<td>1.12</td>
<td></td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>(2.15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(see Ref. [27])</td>
<td>> 3</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>14.5</td>
<td>0.301(3) a,q</td>
<td>9.90(4) c</td>
<td>9.83(1)</td>
<td>9.61(1)</td>
<td>9.07(1)</td>
<td>220 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>536</td>
<td>0.252</td>
<td>1.03</td>
<td>0.752</td>
<td>0.295</td>
<td>6.14</td>
<td>45.9</td>
<td></td>
</tr>
<tr>
<td>(16.24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 4</td>
<td></td>
</tr>
</tbody>
</table>

aEscaped α particle registered solely by the implantation detector. Statistical assessments imply that it is likely that one out of the ten assigned escape-like events during beam-off periods is random [22].

bFission event registered by both implantation and box detector.

cα particle registered by both implantation and box detector.

dα particle registered by both implantation and box detector, but pixel in box detector not uniquely defined.

eHigh-energy implant consistent with transfer reaction product 2.45 s prior to this α decay.

fα particle registered by both implantation and box detector, but into corner pixel and/or guard ring of box detector.

gDuring beam-on periods, a total of five possible decay events are registered in the pixel between α\textsubscript{2} and α\textsubscript{5}, two with apparent full energy and three escape-like.

hFission event registered about two days after completion of the in-beam part of the experiment.

iA total of four escape-like events are registered in pixel 200 within 60 s after α\textsubscript{3}, two during beam-on and two during beam-off periods.

jFour candidates exist for remaining decays in the chain within 10 s after α\textsubscript{2}: One beam-off escape-like and one beam-off reconstructed event, as well as one beam-on reconstructed and one beam-on full-energy event.

kAssessments based on detector rates imply that this in-beam escape-like event has a random probability of up to 50% [22].

lA total of four escape-like events are registered in pixel 465 between α\textsubscript{2} and α\textsubscript{5}, two during beam-on and two during beam-off periods.

mA total of five escape-like events are registered in pixel 784 during beam-on periods within 30 s after α\textsubscript{3}.

nEscaped α particle registered solely by the p-side of the implantation detector while triggered by another event in the implantation detector 10.7 μs earlier.

oA 237(1)-keV γ-ray is observed in prompt coincidence with an escape-like event seen during a beam-off period 0.304 s after the 9.92(1)-MeV full energy α-event assigned to 280Rg.

pA total of three escape-like events are registered in pixel 79 during beam-off periods within 4 s after α\textsubscript{4}.

qA second escape-like event is observed during a beam-off period 0.152 s after the first one.