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Abstract

Previous genome-wide association (GWA) studies have identified SNPs associated with areal bone mineral density (aBMD).
However, this measure is influenced by several different skeletal parameters, such as periosteal expansion, cortical bone
mineral density (BMDC) cortical thickness, trabecular number, and trabecular thickness, which may be under distinct
biological and genetic control. We have carried out a GWA and replication study of BMDC, as measured by peripheral
quantitative computed tomography (pQCT), a more homogenous and valid measure of actual volumetric bone density.
After initial GWA meta-analysis of two cohorts (ALSPAC n = 999, aged, 15 years and GOOD n = 935, aged, 19 years), we
attempted to replicate the BMDC associations that had p, 16 102 5 in an independent sample of ALSPAC children (n = 2803)
and in a cohort of elderly men (MrOS Sweden, n = 1052). The rs1021188 SNP (nearRANKL) was associated with BMDC in all
cohorts (overall p = 26 102 14, n = 5739). Each minor allele was associated with a decrease in BMDC of , 0.14SD. There was
also evidence for an interaction between this variant and sex (p = 0.01), with a stronger effect in males than females (at age
15, males2 6.77mg/cm3 per C allele, p = 26 102 6; females 2 2.79 mg/cm3 per C allele, p = 0.004). Furthermore, in a
preliminary analysis, the rs1021188 minor C allele was associated with higher circulating levels of sRANKL (p, 0.005). We
show this variant to be independent from the previously aBMD associated SNP (rs9594738) and possibly from a third variant
in the same RANKL region, which demonstrates important allelic heterogeneity at this locus. Associations with skeletal
parameters reflecting bone dimensions were either not found or were much less pronounced. This finding implicatesRANKL
as a locus containing variation associated with volumetric bone density and provides further insight into the mechanism by
which the RANK/RANKL/OPGpathway may be involved in skeletal development.
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Introduction

Genome-wide association studies have identified reliable genetic
associations with Dual x-ray absorptiometry (DXA)-derived
measures related to bone mass, such as areal bone mineral density
(aBMD) [1–4]. aBMD, is a commonly used skeletal trait measure

on the basis of its ability to predict fractures at clinically important
sites [5]. However, this measurement is influenced by several
different skeletal parameters such as periosteal expansion, cortical
BMD (BMDC), cortical thickness, trabecular number and
trabecular thickness [6], all measures which may be under distinct
systems of biological and genetic control. Currently, it is unclear
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which of these more precise bone related phenotypes identified
genetic associates are associated with, whether work on aBMD is
telling us more about bone size or growth [7], or what genetic
variation has been missed through the use of more global bone
measures.

Devices such as peripheral quantitative computed tomography
(pQCT), which measure cross sections of predominantly cortical
or trabecular bone, enable the different constituents of bone mass
to be analysed separately (Figure 1) and may offer advantages over
DXA in terms of identifying genetic correlates of specific bone
phenotypes. Recently we examined whether genetic polymor-
phisms found to be associated with aBMD in recent GWA studies
were also related to pQCT parameters, based on analysis of
adolescents from the Avon Longitudinal Study of Parents and
Children (ALSPAC) and young adult men from the ‘Gothenburg
Osteoporosis and Obesity Determinants’ (GOOD) cohort [8]. We
found that rs3018362 (nearRANK), and rs4355801 and rs6993813
(nearOPG), reported as being associated with aBMD in previous
GWA studies [1,3], were associated with BMDC as measured by
tibial pQCT, but not with any other pQCT phenotype. This
raised the possibility that BMDC is a potentially useful phenotype

for detecting novel genetic influences on the skeleton, possibly
reflecting the fact that this measure is entirely size independent.

Here we perform a GWA study of BMDC, based on data from
tibial pQCT scans in the ALSPAC and GOOD cohorts. We
present the results of our initial GWA meta-analysis, along with
those from replication studies involving a further set of individuals
from ALSPAC, and the MrOS Sweden cohort of elderly men.

Results

Table 1 displays the means and standard deviations of bone
traits for the four cohorts (ALSPAC discovery, GOOD discovery,
ALSPAC replication and MrOS Sweden replication). Overall
aBMD and BMDc were higher in the young adult men in the
GOOD cohort when compared to the younger subjects in the
ALSPAC cohort and the older men of MrOS Sweden. BMDC is
positively correlated with cortical thickness and trabecular BMD,
but inversely correlated with the other pQCT traits, demonstrat-
ing the complicated interaction between these traits (Table 2).
There is much lower correlation between BMDC and BMD as
measured by DXA (irrespective of measurement site).

In the genome-wide association meta-analysis of the ALSPAC
discovery cohort and GOOD cohort there was little systematic
inflation of test statistics (l GC = 1.021 (1.0004 for ALSPAC; 1.010
for GOOD), but a marked deviation from the null amongst the
lowest observed p-values (Figure 2). The greatest evidence for
association between genetic variation and BMDC was seen at
rs1021188 (ALSPACb = 2 7.63; GOOD b = 2 6.02, overall
p = 36 102 11 (p = 46 102 11 after applying genomic control)) on
chromosome 13, slightly upstream of theRANKLgene (Figure 3).
We selected the nine regions with p, 16 102 5 and carried out
analyses conditional on the most associated SNP in that region to
check if there were multiple independently associated SNPs in
each region (A full list of SNPs that exhibit nominal evidence of
association (p, 16 102 5) with BMDC can be found in the
supplementary online material, Table S1). TheRANKLregion of
chromosome 13 was the only region for which a second SNP
(rs9525613) still showed marginal association (p = 0.008) when
conditioning on the most associated SNP in this region
(rs1021188). We selected both of these SNPs for replication
follow-up, in addition to the top ranking SNP from each of the
other regions (rs7338502, rs211804, rs8102334, rs17066364,
rs9541712, rs16877095, rs4280044, rs11875173). As well as our

Figure 1. Cartoon depicting different cortical dimensions derived from tibial pQCT scans. Cortical bone mass is derived from the product
of cortical bone area and cortical density.
doi:10.1371/journal.pgen.1001217.g001

Author Summary

Previous studies that have identified genetic polymor-
phisms involved in bone density have used a technique
that cannot differentiate between cortical and trabecular
bone. We have carried out the first genome-wide
association study using a bone scanning method that
can differentiate between the constituent parts of bone.
We found a genetic variant (rs1021188) near theRANKL
gene that was associated with the density of cortical bone
in the three cohorts that we studied (ranging in age from
15 to 78 years old). We also found that this variant may
have a more prominent effect on cortical bone density in
males than females. In addition, the minor C allele of
rs1021188 was associated with higher circulating levels of
free RANKL. Although theRANKLgene has been previously
identified as being important for bone structure (albeit
with a different SNP showing association), we show for the
first time that this may be primarily due to its influence on
the density of cortical bone, rather than the size of the
bone or other bone features.

The Role ofRANKLin Cortical BMD

PLoS Genetics | www.plosgenetics.org 2 November 2010 | Volume 6 | Issue 11 | e1001217



primary analyses which adjusted for age, sex (ALSPAC only),
height and weight(ln), we also carried out analyses adjusting for
only age and sex and found broadly similar results.

In both the replication cohorts theRANKLSNP (rs1021188) was
the only variant to be consistently associated and the only SNP to
reach genome-wide significance in a p-value meta-analysis of the
four cohorts (p = 26 102 14, total n = 5739) (Table 3). On carrying
out an inverse-variance meta-analysis of the ALSPAC, GOOD
and MrOS Sweden cohorts each minor C allele was associated
with a clear decrease in BMDC of , 0.14 SD (Table 4), explaining
0.6%, 2.2% and 0.5% of the variation in the ALSPAC cohort,
GOOD cohort and MrOS Sweden cohort, respectively.

The association between rs1021188 and BMDC was stronger in
males (b = 2 6.77, p = 26 102 6) than females (b = 2 2.79,
p = 0.004) in the entire ALSPAC cohort (and testing for an
interaction between sex and genotype gave p = 0.01) (Table 5).

Both male-only cohorts showed similar effects for rs1021188 and
BMDC (b = 2 6.02 GOOD, b = 2 5.97 MrOS Sweden).

After removal of theRANKLregion (chr 13: 42000–42150Kb)
from the main analysis, there was evidence for a marked reduction
in the inflation of test statistics, however the existence of some
departure from the expected null distribution suggested that
further loci remain to be identified (Figure 2).

We found no association between BMDC and a RANKL variant
(rs9594738) which has previously been associated with aBMD [2,3].
We assessed the proximity of our most associated loci (rs1021188),
the nearby rs9525613 (which we also attempted to replicate) and
rs9594738 to theRANKL gene (Figure 4). We found that the
rs1021188 SNP is much closer to theRANKLgene than the aBMD
associated SNP (and rs9525613) and that there are high recombi-
nation rates between the two regions (r2 between the two SNPs is
0.01), indicating that these may be separate signals (Figure 4).

Table 1. Characteristics of the included cohorts.

ALSPAC (discovery) ALSPAC (replication) GOOD (discovery) MrOS Sweden (replication)

n = 999 n = 2803 n = 935 n = 1052

Age, years 15.4 (0.22) 15.5 (0.29) 18.9 (0.6) 78.7 (3.0)

Men, no. (%) 466 (47%) 1349 (48%) 935 (100%) 1052 (100%)

Height, cm 169.5 (8.2) 169.2 (8.3) 181.6 (6.6) 173.9 (6.4)

Weight, kg 61.0 (10.7) 61.1 (11.4) 73.9 (11.6) 79.2 (11.2)

Position of cortical section from distal end of tibia 50% 50% 25% 38%

cortical BA, mm2 300.5 (48.3) 300.4 (50.3) 270.4 (34.5) 324.9 (46.7)

cortical BMC, mg 330.0 (50.5) 330.1 (52.9) 312.5 (39.5) 367.1 (56.1)

cortical BMD, mg/cm3 1100.0 (38.1) 1100.6 (38.8) 1155.7 (19.9) 1127.7 (40.8)

cortical Th, mm 5.40 (0.65) 5.38 (0.69) 4.43 (0.51) 5.17 (0.75)

cortical PC, mm 72.6 (6.0) 72.7 (6.2) 75.0 (4.9) 79.6 (5.9)

cortical EC, mm 38.7 (5.8) 38.9 (6.0) 47.2 (5.5) 47.1 (7.9)

Position of trabecular section from distal end of tibia NA NA 4% 4%

trabecular BMD, mg/cm3 NA NA 265.6 (33.9) 217.4 (37.5)

Total body BMD, g/cm2 n = 4003 1.03 (0.09) 1.25 (0.10) NA

Femoral neck BMD, g/cm2 n = 3328 0.98 (0.12) 1.17 (0.16) 0.83 (0.13)

Lumbar spine BMD, g/cm2 NA 1.21 (0.15) 1.14 (0.20)

Values are mean(SD), unless otherwise stated.
BA = bone area, BMC = bone mineral content, BMD = bone mineral density, Th = thickness, PC = periosteal circumference, EC = endosteal circumference.
doi:10.1371/journal.pgen.1001217.t001

Table 2. Spearman’s rank correlation coefficients (rho) between the bone traits in the GOOD cohort.

pQCT phenotypes DXA phenotypes

cort BMC cort BA cort PC cort EC cort Th Trab BMD TB BMD FN BMD LS BMD

cort BMD 2 0.017 2 0.140 2 0.346 2 0.369 0.109 0.112 0.069 0.039 0.074

cort BMC 0.991 0.678 0.144 0.790 0.502 0.785 0.676 0.608

cort BA 0.717 0.191 0.766 0.483 0.767 0.664 0.591

cort PC 0.796 0.144 0.132 0.500 0.405 0.387

cort EC 2 0.439 2 0.224 0.071 0.016 0.048

cort Th 0.584 0.642 0.587 0.498

trab BMD 0.643 0.650 0.534

BA = bone area, BMC = bone mineral content, BMD = bone mineral density, Th = thickness, PC = periosteal circumference, EC = endosteal circumference, TB =total body,
FN = femoral neck, LS = lumbar spine.
doi:10.1371/journal.pgen.1001217.t002
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To determine if the association between rs1021188 and BMDC

was specific for this bone trait, we have tested for associations
between theRANKLSNP (rs1021188) and other skeletal traits in
ALSPAC, GOOD and MrOS Sweden. rs1021188 shows some
evidence for association with endosteal circumference and cortical
thickness, but to a much lesser extent than BMDC and even less so
for cortical content and periosteal circumference. Though the
evidence for these associations comes mostly from the ALSPAC
and MrOS cohorts, the effect sizes seen in the GOOD cohort are
extremely consistent and the lack of association in this cohort is
likely due to the reduced power found in this smaller study.
Although there is some evidence for association between
rs1021188 and total-body, femoral neck and lumbar-spine BMD
(as measured by DXA), this appears to be weaker than the
association seen with tibial cortical BMD, though with smaller
sample sizes for these analyses these comparisons may not be
robust (Table 4). In the ALSPAC cohort, the association between
rs1021188 and BMDC was only slightly attenuated when the
analysis was adjusted for femoral neck BMD (b = 2 4.49,
p = 56 102 7) or total body BMD (b = 2 3.64, p = 36 102 5), as
measured by DXA.

In analysis of mean BMDC z-scores per rs1021188 genotype in
each of the cohorts rs1021188 had an approximately additive
effect; with each C allele cortical BMD is decreased (Figure 5).
This appears to be true across all ages, although the absolute
BMDC values vary.

Finally, we analysed the relationship between rs1021188
genotype and plasma levels of soluble RANKL (sRANKL) in a
small sample of male subjects from ALSPAC. A positive
relationship was observed between number of minor rs1021188
alleles and sRANKL level (P = 0.005), such that sRANKL levels
were over twice as great in those with CC versus TT genotypes
(Figure 6).

Discussion

In genomewide analysis of the specific bone phenotype BMDC,
we have been able to identify genetic variants different to those
found from equivalent studies based on aBMD. In particular, the
rs1021188 SNP was found to be reliably associated with BMDC,
but has not previously been reported to be associated with any

other bone phenotype to date. rs1021188 is located, 20Kb
upstream of the receptor activator of nuclear factor-kB ligand gene
(RANKL) on chromosome 13. The minor C allele was associated
with a decrease in BMDC (of , 0.14SD, explaining 0.5–2.2%, of
the variation - though the larger of these estimates is inflated by
the more homogenous GOOD cohort having less overall variance)
and there was also evidence for an interaction with sex, with larger
effects being observed amongst males (though this study was not
designed to test for sex-gene interactions). The effect of this marker
on BMDC was similar across all cohorts, suggesting that although
our discovery set comprised adolescents/young adults, this marker
influences cortical density to a similar extent in the elderly.

Whereas the rs1021188 (C allele) ofRANKLshowed a strong
inverse association with BMDC, associations with cortical bone
mass were somewhat weaker. Nevertheless, the size of the latter
effect was still equivalent to that of a doubling of vigorous physical
activity (as measured by accelerometer) in the ALSPAC cohort at
the same age (unpublished). The weaker association between
rs1021188 genotype and cortical bone mass compared with that of
cortical density is likely to be explained by rs1021188 being
unrelated to cortical bone size (reflected by cortical bone area),
which is a major determinant of cortical bone mass. Although
rs1021188 was not associated with cortical bone area as a whole, a
relatively strong positive association was observed with endosteal
circumference, whereas there was an equivalent inverse associa-
tion with cortical thickness, together suggesting that rs1021188
increases endosteal expansion. There was also a weak positive
association between this marker and periosteal circumference
(possibly reflecting a compensatory response), which may explain
why the increased endosteal expansion associated with this marker
had little impact on overall cortical bone size. Since these analyses
were adjusted for height, these findings imply that RANKL
influences the rate of periosteal and endosteal expansion
independently of vertical growth, consistent with a local action
on cortical bone (see below).

The observation that theRANKLrs1021188 is associated with
cortical BMD is consistent with our recent finding from a larger-
scale candidate gene study in the ALSPAC and GOOD cohorts
that other genes of theRANK/ RANKL/ OPG pathway are also
associated with BMDC [8]. Given the important role of this
pathway in regulating osteoclast differentiation [9], these findings
may reflect a response to enhanced net RANKL activity leading to
greater osteoclast activation and hence stimulation of cortical

Figure 2. QQ plot of the ALSPAC and GOOD genome-wide
meta-analysis of BMD C. Blue points show the full genome-wide
results. Red points show the genome-wide results excluding the RANKL
region (chr 13: 42000–42150Kb).
doi:10.1371/journal.pgen.1001217.g002

Figure 3. Manhattan plot of the ALSPAC and GOOD genome-
wide meta-analysis of BMD C.
doi:10.1371/journal.pgen.1001217.g003
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remodeling. Our observation that the minor C allele of rs1021188
was associated with higher circulating levels of free RANKL in a
preliminary analysis, as measured in a small number of ALSPAC
subjects, is consistent with this interpretation. Increased bone
resorption arising from higher RANKL levels is predicted to
reduce BMDC both by increasing cortical porosity and reducing
the available time for secondary mineralization [10]. Increased
bone resorption could also explain the relationship we observed
betweenRANKLrs1021188 and increased endosteal resorption,
which is also an osteoclast-dependent process.

Although theRANKLrs1021188 marker has not been reported
to be associated with any bone-related trait before, a SNP
(rs9594738), 190kb upstream ofRANKLwas strongly associated
(standardized beta =2 0.17, p = 2.06 102 21) with lumbar spine
areal bone mineral density (aBMD) in a genome-wide association
and replication study in four cohorts of mostly elderly subjects
(with a high proportion of postmenopausal women) [3] and a
perfect proxy SNP for rs9594738 (rs9533090, r2 = 1) was also
strongly associated (standardized beta =2 0.12, p = 5.46 102 25)
with lumbar spine aBMD in a further meta-analysis of five

genome-wide association studies of a wide age range (again with a
high proportion of women) [2]. These studies also found these
SNPs to be associated with hip aBMD, but to a lesser extent
(rs9594738: standardized beta =2 0.10, p = 1.96 102 8; rs9533090:
standardized beta =2 0.04, p = 3.96 102 4) and not with low
trauma fractures (p = 0.23), demonstrating that there may be
skeletal site heterogeneity in the associations with RANKL. In
contrast, we have previously shown rs9594738 to not be associated
with BMDC in the ALSPAC and GOOD cohorts [8] and we show
here that the two signals are likely to be independent. There are
high recombination rates between the two regions where
rs1021188 and rs9594738 are located, and so these two markers
may well be tagging distinct functionalRANKLvariants which
affect these different bone phenotypes individually. Alternatively,
as rs9594738 is located, 190kb upstream ofRANKLand is in fact
closer to another geneAKAP11, it may be that the two phenotypes
are under the control of different genes entirely, althoughAKAP11
has not to date been implicated in skeletal regulation. In addition
another SNP (rs10507508) has also been shown to be associated
(p = 0.0011) with aBMD after adjusting for 59 other SNPs in the

Figure 4. RANKL regional association plot of the ALSPAC and GOOD genome-wide meta-analysis of BMD C. Diamonds show the
ALSPAC and GOOD GWA meta-analysis p-values, with darker shades indicating increasing linkage disequilibrium with rs1021188. The triangle shows
the meta-analysis p-value of all cohorts (discovery and replication) for rs1021188. The black square shows the second SNP in this region which we
attempted to replicate in this study (rs9525613) and the black circle shows the p-value of rs9594738, which has previously been associated with areal
bone mineral density (3). The grey line shows the recombination rate across the region (data from HapMap).
doi:10.1371/journal.pgen.1001217.g004

Table 5. rs1021188 associations with BMDC in both ALSPAC datasets stratified by sex.

DISCOVERY SET REPLICATION SET WHOLE COHORT

Sex N Beta (se) p interaction p N Beta (se) p interaction p N Beta(se) p interaction p

BOTH 976 2 7.63 (1.67) 5.0E-06 0.074 27532 3.89 (1.01) 1.0E-04 0.060 37292 4.81 (0.86) 3.0E-08 0.012

MALE 455 2 9.77 (2.62) 2.2E-04 1325 2 5.69 (1.66) 6.4E-04 1780 2 6.77 (1.41) 1.6E-06

FEMALE 521 2 4.84 (1.93) 1.2E-02 1428 2 2.01 (1.12) 7.4E-02 1949 2 2.79 (0.97) 4.1E-03

Betas are mg/cm3 per C allele.
doi:10.1371/journal.pgen.1001217.t005
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region [3], possibly representing a further independent association
with BMD at this locus. This allelic heterogeneity could be
important for understanding the relationship betweenRANKLand
bone phenotypes.

The differing genetic associations between aBMD and BMDC

(and site of investigation) at thisRANKLlocus may be explained by
the genetic variants being associated with distinct properties of
bone. Since analysis of lumbar spine BMD may be mostly
assessing trabecular bone, previously identifiedRANKLvariants
may be particularly associated with this component. In contrast,
the RANKLvariant that we identify here may be more strongly
associated with cortical bone, given that the tibial pQCT site
(which formed the basis of this study) comprises solely of cortical
bone. Here, total body BMD and femoral neck BMD showed only
a weak association with theRANKL rs1021188 marker (and
adjusting for these measures in the BMDC analysis only slightly

attenuated the association) and the lumbar spine BMD (which
largely comprises trabecular bone) showed an association very
similar to that seen for tibial trabecular BMD, implying that
cortical associations may be missed using DXA to assess BMD.
The implication that there is little relationship between cortical
BMD and BMD as measured by DXA is consistent with the weak
correlations we observed between cortical BMD and DXA
measured BMD (irrespective of site). This is likely to reflect the
fact that BMD as measured by DXA is mainly influenced by
parameters such as overall bone size and cortical thickness, as
opposed to the material density of bone and/or degree of cortical
porosity (as reflected by pQCT measured cortical BMD). In
contrast to BMD as measured by DXA which is related to clinical
end points such as fracture risk, few if any studies have analysed
cortical BMD measurements in relation to fracture risk. Never-
theless, recent findings have highlighted the importance of changes

Figure 5. Mean (and standard error) BMD C z-scores per rs1021188 genotype in each of the cohorts. Sample sizes are shown alongside
each point. Diamonds show the combined z-score estimates per genotype (the width of the diamond represents the combined standard error).
doi:10.1371/journal.pgen.1001217.g005
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in determinants of cortical density, such as cortical porosity, in the
pathogenesis of osteoporotic fracture [11].

Taken together with our previous report of associations between
RANKand OPG variants and BMDc, our results provide further
evidence that theRANK/ RANKL/ OPGaxis affects the skeleton at
least in part by influencing material density of cortical bone.
Although the precise relationship between this phenotype and
clinical end points such as fracture risk remains to be established, it
is clear that the availability of precise and specific measures of
bone health provide great resolution in the analysis of heritable
contributions to this category of traits. It is also tempting to
speculate that changes in BMDC contribute to recent observations
that the RANKL inhibitor denosumab reduces fracture risk [12].
Consistent with this possibility, administration of denosumab has
been found to increase femoral BMDC in mice with a knock-in of
humanised RANKL [13].

In summary we have performed the first GWAS with cortical
BMD. We identified a SNP (rs1021188) close to theRANKLgene
with strong evidence for association with BMDC in adolescent and
young adult cohorts used for the discovery phase, as well as in our
replication cohort of elderly men, suggesting this genetic effect acts
over the whole lifetime. We also show some evidence for an
interaction with sex for this variant, with the association being
stronger in males. In addition, the minor C allele of rs1021188 was
associated with higher circulating levels of free RANKL in a
preliminary analysis. Consistent with an action of this variant via
altered RANKL and hence osteoclast activity, an equivalent
association was also observed with endosteal expansion as reflected
by endosteal circumference. However, there was little relation
between rs1021188 and overall cortical bone area, possibly
reflecting compensatory changes in periosteal apposition. This
signal appears to be independent of another previously reported
association in this region between aBMD and rs9594738,
demonstrating that there may be important allelic heterogeneity
at this locus, and possibly indicating that these variants are

associated with different components of bone structure. Further
studies are justified to extend these findings, for example by
performing further GWA studies with sufficient power to detect
other important genetic influences on cortical BMD.

Methods

ALSPAC cohort
Participants. The Avon Longitudinal Study of Parents and

their Children (ALSPAC) is a longitudinal population-based birth
cohort that initially included over 13,000 women and their
children in Avon, UK, in the early 1990s. This cohort is described
in detail on the website (http://www.alspac.bris.ac.uk) and
elsewhere [14]. Both mothers and children have been
extensively followed from the 8th gestational week onwards
using a combination of self-reported questionnaires, medical
records and physical examinations. Ethical approval was
obtained from the ALSPAC Law and Ethics committee and
relevant local ethics committees, and written informed consent
provided by all parents. Blood samples were taken and DNA
extracted as previously described [15].

Bone measures. pQCT scans were performed on
approximately 4500 children when they attended the age 15
research clinic at which time total body DXA scans were also
performed. Results for hip DXA scans, collected at the age 13
research clinic, were also analysed. At both time points, height was
measured using a Harpenden stadiometer (Holtain Limited,
Wales) and weight using a Tanita Body Fat Analyser.

Cortical bone mineral content (BMCC), cortical bone mineral
density (BMDC) and cortical bone area (BAC), were measured on a
single slice at the mid tibia using the Stratec XCT2000L
(Germany). Periosteal circumference (PC), endosteal circumfer-
ence (EC) and cortical thickness (CT) were derived using a circular
ring model. A threshold routine was used for defining cortical
bone, which specified a voxel with a density. 650 mg/cm3 as
cortical bone. Of the 4500 pQCT scans obtained in ALSPAC 89
were rejected as being of insufficient quality. The coefficients of
variation (CVs) based on 139 ALSPAC subjects scanned a mean of
31 days apart, were 2.7%, 1.3% and 2.9% for BMCC, BMDC,
BAC, respectively.

Total body BMD and BMD of the left femoral neck were
measured using a Lunar Prodigy scanner, for which CVs were
1.0% (146 subjects) and 1.7% (166 subjects) respectively.

Discovery set genotyping. 1760 ALSPAC individuals were
genotyped using the Illumina HumanHap317K SNP chip.
Markers with , 1% minor allele frequency,. 5% missing
genotypes or which failed an exact test of Hardy-Weinberg
equilibrium (HWE) (p, 16 102 7) were excluded from further
analysis. We also excluded any individuals who did not cluster with
the CEU individuals in multidimensional scaling analysis, who had
. 5% missing data, heterozygosity of. 36.4% or , 34.3% and a
male who scored heterozygous at many X chromosome loci. After
data cleaning we were left with 1518 individuals (999 with pQCT
data) and 315,807 SNPs. We carried out imputation to HapMap
release 22 using Mach 1.0, Markov Chain Haplotyping [16].

Replication set genotyping. Genotyping (of the SNPs with
p, 16 102 5 in the GWAS meta-analysis) was carried out on the
entire ALSPAC cohort for whom DNA was available (10121
individuals) by KBioscience (http://www.kbioscience.co.uk), who
employ a novel form of competitive allele specific PCR (KASPar)
for genotyping. Those individuals who were included in the
ALSPAC discovery analysis as well as those of non-white reported
ethnicity, with . 10% missing genotypes and with siblings in the
cohort were excluded from the analysis. For each SNP there were

Figure 6. Scatter plot and mean values of free plasma RANKL
levels according to rs1021188 genotype. Of the 37 subjects
measured, replicate samples in six had a CV of. 20% and were
excluded, leaving 9, 17 and 5 samples with TT, CT and CC genotypes
respectively (a single sample fell below the detection limit of the assay
and was therefore entered at the lower detection value i.e 0.02pmol/l).
A positive relationship was observed between number of minor
rs1021188 alleles and plasma RANKL level (P = 0.005; linear regression
analysis following Rank-Based Inverse Normal Transformation).
doi:10.1371/journal.pgen.1001217.g006
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between 2753 and 2789 individuals with both pQCT and
genotype data. All but one SNP (rs9541712) were successfully
genotyped. All were in HWE.

Measurement of free RANKL levels. Soluble RANKL
levels (sRANKL) were measured on fasting blood samples (which
were obtained according to standard protocols, collected in
heparin tubes, and stored at minus 80 degrees until further use),
in 37 male individuals attending the age 15 research clinic,
randomly selected after stratification byRANKL rs1021188
genotype. Measurements, which were performed blind, were
carried out using the ampli-sRANKL enzyme-linked immuno-
sorbent assay (ELISA) from Biomedica (Vienna, Austria) accord-
ing to manufacturer’s instructions, with the exception that 90ml of
plasma was used per well. Measurement ranges, intra- and inter-
assay coefficients of variation (CVs) were 0.02–2pmol/l,, 9%
and , 6% respectively. Duplicate samples with a coefficient of
variation of, 20% were considered for further statistical analysis.
In sample(s) where the recorded concentration was below the
detection limit of 0.02 pmol/l, the latter value was entered in
subsequent analyses.

GOOD cohort
Participants. The Gothenburg Osteoporosis and Obesity

Determinants (GOOD) study was initiated to determine both
environmental and genetic factors involved in the regulation of
bone and fat mass [17,18]. Male study subjects were randomly
identified in the greater Gothenburg area in Sweden using
national population registers, contacted by telephone, and invited
to participate. To be enrolled in the GOOD study, subjects had to
be between 18 and 20 years of age. There were no other exclusion
criteria, and 49% of the study candidates agreed to participate
(n = 1068). The subjects of the GOOD cohort were also analysed
after five years of follow-up, between 23 and 25 years of age. The
GOOD study was approved by the local ethics committee at
Gothenburg University. Written and oral informed consent was
obtained from all study participants. Height was measured using a
wall-mounted stadiometer, and weight was measured to the
nearest 0.1 kg.

Bone measures. BMDC, BMDC and BAC were measured on
a single tibial diaphyseal slice (at 25% of the bone length in the
proximal direction of the distal end of the bone) using the Stratec
XCT2000 (Germany). PC, EC and CT were derived using a
circular ring model. A threshold routine was used for defining
cortical bone, which specified a voxel with a density. 710 mg/
cm3 as cortical bone. Trabecular vBMD was measured using a
scan through the distal metaphysis (at 4% of the bone length in the
proximal direction of the distal end of the bone) of tibia. Tibia
length was measured from the medial malleolus to the medial
condyle of the tibia. The CVs were, 1% for all pQCT
measurements.

aBMD (g/cm2) of the whole body, femoral neck (of the left leg),
and lumbar spine were assessed using the Lunar Prodigy DXA (GE
Lunar, Madison, WI, USA). The CVs for the aBMD measurements
ranged from 0.5% to 3%, depending on application.

Discovery set genotyping. Genotyping was performed with
Illumina HumanHap610 arrays at the Genetic Laboratory,
Department of Internal Medicine, Erasmus Medical Center,
Rotterdam, the Netherlands. Genotypes were called using the
BeadStudio calling algorithm. Genotypes from 935 individuals
passed the sample quality control criteria [exclusion criteria:
sample call rate, 97.5%, gender discrepancy with genetic data
from X-linked markers, excess autosomal heterozygosity. 0.33
(, FDR, 0.1%), duplicates and/or first degree relatives identified
using IBS probabilities (. 97%), ethnic outliers (3 SD away from

the population mean) using multi-dimensional scaling analysis with
four principal components]. Across 22 duplicate samples,
genotype concordance exceeded 99.9%. We carried out
imputation to HapMap release 22 (after excluding SNPs with
MAF, 1%, SNP call rate, 98% and HWE p value, 16 102 6)
using Mach 1.0, Markov Chain Haplotyping [16].

MrOS Sweden cohort
Participants. The Osteoporotic Fractures in Men (MrOS)

study is a multicenter, prospective study including older men in
Sweden (3014), Hong Kong (> 2000), and the United States
(> 6000). In the present study, associations between candidate
polymorphism and skeletal parameters were investigated in the
Swedish cohort (Table 1), which consists of three sub-cohorts from
three different Swedish cities (n = 1005 in Malmo¨, n = 1010 in
Göteborg, and n = 999 in Uppsala). Study subjects (men aged 69–
81) were randomly identified using national population registers,
contacted and asked to participate. To be eligible for the study, the
subjects had to be able to walk without assistance, provide self-
reported data, and sign an informed consent; there were no other
exclusion criteria [19]. The study was approved by the ethics
committees at the Universities of Gothenburg, Lund, and Uppsala.
Informed consent was obtained from all study participants.

Bone measures. Validated pQCT analyses were available
for the Gothenburg and Malmo¨ cohorts. BMCC, BMDC and BAC,
were measured on a single tibial diaphyseal slice slice (at 38% of
the bone length in the proximal direction of the distal end of the
bone) using the Stratec XCT2000 (Germany). PC, EC and CT
were derived using a circular ring model. A threshold routine was
used for defining cortical bone, which specified a voxel with a
density. 710 mg/cm3 as cortical bone. Trabecular vBMD was
measured using a scan through the distal metaphysis (at 4% of the
bone length in the proximal direction of the distal end of the bone)
of tibia. The CVs were, 1% for all pQCT measurements.
Adjustments for study centre were performed.

Total body areal BMD (aBMD, g/cm2), as well as aBMD of the
femoral neck and lumbar spine (L1-L4) were assessed at baseline
using the Lunar Prodigy dual energy X-ray absorptiometry (DXA)
(n = 2004 from the Uppsala and Malmo¨ cohorts; GE Lunar Corp.,
Madison, WI, USA) or Hologic QDR 4500/A-Delphi (n = 1010
from the Göteborg cohort; Hologic, Waltham, MA, USA). The
CVs for the aBMD measurements ranged from 0.5% to 3%,
depending on the application. To be able to use DXA
measurements performed with equipment from two different
manufacturers, a standardized BMD (sBMD) was calculated, as
previously described [19]. Adjustments for study centre were
performed.

Replication set genotyping. Genotyping (of the SNPs with
p, 16 102 5 in the GWAS meta-analysis) was carried out using
matrix-assisted laser desorption ionization-time of flight mass
spectrometry on the Sequenom MassARRAY platform (San
Diego, CA, USA). The genotyping call rate was. 97% and the
SNP-s were in Hardy-Weinberg equilibrium.

Statistical methods
Genome-wide meta-analysis and replication. The

ALSPAC discovery set (n = 999) and GOOD (n = 935)
contributed to the genome-wide meta-analysis. We analysed only
those imputed SNPs which had a minor allele frequency of. 0.01
and an r2 imputation quality score of. 0.3 in both sets
(n = 2,417,199). We carried out genome-wide association
analyses for BMDC using additive linear regression in
Mach2QTL for both ALSPAC and GOOD (using GRIMP [20]
for the GOOD analyses). We included age, sex, height and
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weight(ln) as covariates in ALSPAC, and age, height and
weight(ln) as covariates in the male only GOOD cohort.

We carried out meta-analyses of the results from the two cohorts
using two methods in METAL (www.sph.umich.edu/csg/abecasis/
metal). In the p-value meta-analysis study-specific Z-statistics are
calculated (which summarise the p-values and direction of effect)
for each SNP’s association. The Z-statistics are then summed
across studies, using weights proportional to the square-root of
each study’s sample size, to provide a summary p-value for each
association. In the inverse variance method standardized betas and
standard errors from each study are combined using a fixed effect
model which weights the studies using the inverse variance. We
also carried out the meta-analyses with and without genomic
control. The results using each method were very similar and the
selection of SNPs was based on the p-value meta-analysis not
adjusted for genomic control. Genome-wide significance was taken
to be p, 56 102 8.

We selected one SNP from each independent region that had a
p, 16 102 5 for replication in the ALSPAC replication cohort and
MrOS Sweden. Additive linear regression analyses were carried
out for the associations between these SNPs and BMDC in PLINK
[21] (ALSPAC) or in SPSS Statistics 17.0 (MrOS Sweden) using
age, sex, height and weight(ln) as covariates. We calculated the
combined p-value (for all four cohorts) using METAL (method
described above).

Association between the RANKL SNP and other
traits. For the RANKL SNP (rs1021188) we also tested for
associations with other bone traits; BAC, BMCC, PC, EC and CT
using the pQCT data and TB BMD, FN BMD and LS BMD in all
cohorts (where the appropriate measures were available). The
ALSPAC discovery and replication cohorts were combined and
we also show the association results from GOOD from two time-
points (the original GWAS time-point (19 years) and data from the
five year follow-up visit (24 years). We carried out association
analyses using additive linear regression in PLINK for ALSPAC
and in SPSS Statistics 17.0 for GOOD and MrOS Sweden. We
included age, sex, height and weight(ln) as covariates in the model
in ALSPAC, and age, height and weight(ln) as covariates in the
male only GOOD and MrOS Sweden cohorts. Pubertal stage was
also included as a covariate in the FN BMD analyses of ALSPAC.

An interaction between sex and rs1021188 in association with
BMDC in the ALSPAC cohort was tested in PLINK, which tests
the significance of the interaction term in the linear model.

We carried out meta-analyses using standardized betas and
standard errors from each of the studies. This was carried out in
METAL using the inverse-variance method described above.

sRANKL levels were transformed using the Rank-Based Inverse
Normal Transformation. Linear regression was used to determine
the relationship between sRANKL level and the addition of the
minor rs1021188 allele.

Supporting Information

Table S1 All SNPs with p, 16 102 5 in the discovery meta-
analysis GWAS for BMDC. Shaded rows are those SNPs taken
forward to replication.
Found at: doi:10.1371/journal.pgen.1001217.s001 (0.24 MB
DOC)
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