Polarization effects in two-photon nonresonant ionization of argon with extreme-ultraviolet and infrared femtosecond pulses

O'Keeffe, P; Lopez, Rodrigo; Mauritsson, Johan; Johansson, Ann; L'Huillier, Anne; Veniard, V; Taieb, R; Maquet, A; Meyer, M

Published in:
Physical Review A (Atomic, Molecular and Optical Physics)

DOI:
10.1103/PhysRevA.69.051401

2004

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research:
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Polarization effects in two-photon nonresonant ionization of argon with extreme-ultraviolet and infrared femtosecond pulses

P. O’Keeffe,¹ R. López-Martens,² J. Mauritsson,² A. Johansson,² A. L’Huillier,²
V. Véniai,³ R. Taieb,³ A. Maquet,³ and M. Meyer¹,⁴

¹LURE, Centre Universitaire Paris-Sud, Bâtiment 209D, F-91898 Orsay Cedex, France
²Department of Physics, Lund Institute of Technology, P.O. Box 118, S-22100 Lund, Sweden
³LCP-MR, Université Pierre et Marie Curie, 11 Rue Pierre et Marie Curie, F-75231 Paris Cedex 05, France
⁴CEA/DRECAM/SPAM, CEN Saclay, F-91195 Gif-sur-Yvette, France

We report the results of experimental and theoretical investigations of the two-color, two-photon ionization of Ar atoms, using femtosecond pulses of infrared laser radiation in combination with its extreme-ultraviolet harmonics. It is shown that the intensities of the photoelectron lines resulting from the absorption of photons from both fields strongly depend both on the respective phases of the fields and on atomic quantities such as the asymmetry parameter. These phases, which are notoriously difficult to measure, can be estimated by changing the polarization state of the laser radiation.

DOI: 10.1103/PhysRevA.69.051401
PACS number(s): 32.80.Rm, 32.80.Fb, 42.65.Ky

Photoionization measurements provide invaluable information on the structure of the electronic cloud of an atom or a molecule. The general features of photoionization, namely, the energy dependence, the angular distribution of the photoelectrons, and resonance effects, have been studied in great detail using mainly synchrotron radiation sources [1–3]. More specific investigations have been carried out by means of two-photon pump-probe experiments combining laser and synchrotron radiation [4,5]. Novel high-order harmonic generation (HHG) sources providing ultrashort extreme-ultraviolet (XUV) or x-ray pulses lasting a few femtoseconds [6] or less [7,8] will provide a deeper insight into the electronic relaxation processes and into the dynamics of photoionization [9]. Today, femtosecond XUV sources such as high-order harmonic radiation or the recent TESLA free-electron laser [10] are in the process of being developed and characterized. The number of pump-probe studies with these sources is therefore still rather limited and experiments often serve as a characterization tool for the sources themselves [7,8,11].

Electron spectra obtained from irradiation of a gas sample with harmonic emission, reflecting the harmonic intensity distribution, contain a series of lines separated by 2ω. The combination of the harmonic pulse with part of the fundamental infrared (IR) beam in the interaction chamber will give rise to additional lines, when the intensity of the dressing IR beam is high enough (>10¹⁰ W/cm²) [12] and when both pulses overlap in time and space (see Fig. 1). In the intensity ranges considered here, these so-called sidebands are the result of a two-photon ionization process, as the presence of the IR beam leads to an additional absorption or emission of one IR photon simultaneously with the absorption of the XUV photon. The intensity and shape of the sidebands depend strongly on the characteristics of the two femtosecond pulses [13] and can therefore be utilized to characterize the XUV pulses [11,14]. Since a given sideband is made up of contributions from two consecutive harmonics, the sideband intensity will depend on the phase difference between the two harmonics as well as on the angular mo-

1050-2947/2004/69(5)/051401(4)/$22.50 69 051401-1 ©2004 The American Physical Society
interaction region, the XUV beam intersects the IR probe beam. Alternatively, a quarter-wave plate allows us to vary the degree of ellipticity of the IR beam from linear to circular.

FIG. 2. (Color online) Schematic of the experimental setup. HHG, high harmonic generation; Al, Aluminum filter; MBES, Magnetic bottle electron spectrometer; WP, Retarding wave plate; L, Adjustable lens; FM, Gold focusing mirror.

FIG. 3. Variation of the sideband intensity as a function of the relative angle Θ between the polarization vectors of the XUV and the IR beams. Experimental data for different sidebands: (•)SB₁₄, (△)SB₁₆, (△)SB₁₈, (Δ)SB₂₀, and (○)SB₂₂. Theoretical calculations: (−)SB₁₄, (−)SB₁₆, (−)SB₁₈, (−)SB₂₀, and (−)SB₂₂.

A typical photoelectron spectrum is shown in Fig. 1(b) giving the photoelectron intensity as a function of electron kinetic energy (horizontal axis) and time delay between the two pulses (vertical axis). Figure 1(c) shows the spectrum obtained when both pulses are best temporally overlapped. The dominant structures in Fig. 1(b) are the vertical lines, which are not much affected by the presence of the IR pulses and which correspond to direct photoionization of Ar 3p electrons by the XUV photons. The spin-orbit splitting of about 0.18 eV between the Ar*3p± 2P½ and 2P½ components [22] is not resolved in the present experiment. The sidebands show up for temporal delays Δτ between about −40 and +40 fs. The harmonic pulse durations, extracted from the combined knowledge of the energy-integrated sideband intensity profile and the independently measured 50 fs duration of the IR pulse, are found to be ≈ 30 fs, independent of the XUV photon energy. The shorter XUV pulse duration ensures that all atoms excited by XUV pulses are dressed by the same IR field at optimum spatial and temporal overlap.

When two linearly polarized photon beams are used, the intensity of the sidebands shows a strong and characteristic variation as a function of the relative angle Θ between both electrical field vectors (Fig. 3). Due to the 2π acceptance angle of the magnetic bottle analyzer, the intensity of the sidebands is independent of the precise shape of the angular distributions of the photoelectrons created in the two-photon process. The experimental results of Fig. 3 show a strong polarization dependence of the sideband intensity giving about 60% less intensity when the XUV and IR beams are crosspolarized (Θ=90°) compared to the case when they have the same direction of polarization (Θ=0°), as expected from simple classical arguments. In general, the observed variation is induced by a polarization dependent coupling between the intermediate (s or d) state and the final ep and ef continua. Furthermore, all sidebands seem to behave, within the experimental error, in the same way, indicating that the influence of the resonant 3s-np excitations [18], which lie in the same photon energy region as the 17th and
Polarization Effects in Two-Photon...
two pulses. The theoretical results plotted in Fig. 4 as a function of the angle of rotation, variation of the sideband intensity is given as a function of the interaction region imaged by the MBES. The resulting differences between the two beams are sampled throughout energy. An average calculated over all possible ticity and, again, the result does not depend on the sideband sidebands are only weakly influenced by the degree of ellipticity is equal to tan(γ). As a consequence the results are sensitive to the phase difference

\[\Delta \phi = 2 \phi_L + \phi_{2N-1} - \phi_{2N+1}, \]

where \(\phi_L = \omega \Delta \tau \) depends on the time delay \(\Delta \tau \) between the two pulses. The theoretical results plotted in Fig. 4 as a function of the time delay strongly vary with \(\Delta \phi \).

Experimentally, however, the finite XUV and IR beams intersect at a nonzero angle implying that all possible phase differences between the two beams are sampled throughout the interaction region imaged by the MBES. The resulting variation of the sideband intensity is given as a function of the angle of rotation, \(\gamma \), in Fig. 4(b). The intensities of the sidebands are only weakly influenced by the degree of ellipticity and, again, the result does not depend on the sideband energy. An average calculated over all possible \(\Delta \phi \) for different sideband orders, shown by the broken line in Fig. 4(b), accounts for this experimental feature. This curve is in qualitative agreement with the experimental data, but does not allow us to deduce the phase differences between subsequent harmonics.

On the basis of the present data, we conclude that the variation of the polarization state of the IR field with respect to the linearly polarized XUV field can provide information about the phase differences between consecutive harmonics as well as atomic quantities involving continuum states. Further experiments and calculations are certainly needed and the present experiments represent only a starting point for this type of measurement. Two-photon experiments combined with angular distribution measurements and the variation of polarization characteristics of the IR probe beam provide an ideal testing ground for exploring the internal dynamics of photoionization of field-dressed atoms. In this way, they are of fundamental interest for many experiments planned at the new femtosecond XUV and x-ray sources.

The authors acknowledge the support of the European Community (TMR-grant “Access to Large Scale Facilities,” Contract No. HPRI-CT-1999-00041, RTD-project “X-Ray FEL Pump-Probe,” Contract HRRI-CT-1999-50009, the ATTO network Grant No. HPRN-CT-2000-00133) and the Swedish Science Council.