Experimental f-Value and Isotopic Structure for the Ni I Line Blended with [O I] at 6300 Å

Johansson, Sveneric; Litzén, Ulf; Lundberg, Hans; Zhang, Z

Published in:
Astrophysical Journal

DOI:
10.1086/374037

2003

Link to publication

Citation for published version (APA):
EXPERIMENTAL \textit{f}-VALUE AND ISOTOPIC STRUCTURE FOR THE \Ni\textit{i} LINE BLENDED WITH [O \textit{i}] AT 6300 Å

S. Johansson, U. Litzén, H. Lundberg, and Z. Zhang

Received 2002 December 18; accepted 2003 January 17; published 2003 January 27

ABSTRACT

We have measured the oscillator strength of the \Ni\textit{i} line at 6300.34 Å, which is known to be blended with the forbidden line [O \textit{i}] λ6300 used for the determination of the oxygen abundance in cool stars. We also give wavelengths of the two isotopic line components of ^{58}Ni and ^{60}Ni derived from the asymmetric laboratory line profile. These two line components of \Ni\textit{i} have to be considered when calculating a line profile of the 6300 Å feature observed in stellar and solar spectra. We also discuss the labeling of the energy levels involved in the \Ni\textit{i} line since level mixing makes the theoretical predictions uncertain.

Subject headings: atomic data — stars: abundances — Sun: abundances

1. INTRODUCTION

Allende Prieto, Lambert, & Asplund (2001, hereafter APLA) have recently reviewed the various ways of determining the oxygen abundance in the Sun and other late-type stars and discussed the different problems connected with the spectral oxygen lines used. Stellar conditions limit the number of appropriate lines to a few allowed and forbidden lines of neutral oxygen (O \textit{i} and [O \textit{i}]) in the optical wavelength region and of molecular OH in the UV and IR regions. A frequently used method for determining the oxygen abundance in cool stars and the Sun is to use the forbidden [O \textit{i}] line at 6300 Å, which is particularly studied and analyzed in the solar spectrum by APLA. However, this line is associated with problems since it is blended with an \Ni\textit{i} line in the solar spectrum. This was pointed out earlier by Lambert (1978). Since the [O \textit{i}] line (6300.31 Å) and the blending \Ni\textit{i} line (6300.34 Å) appear as a totally unresolved feature in the solar spectrum, APLA constructed a spectral profile from laboratory data (wavelengths and \textit{f}-values) and compared it with the observed solar feature.

Three of four crucial atomic parameters are known to a satisfactory accuracy, viz., wavelength (Eriksson 1965) and \textit{f}-value (Storey & Zeippen 2000) for the [O \textit{i}] line and wavelength for the \Ni\textit{i} line (Litzén, Brault, & Thorne 1993, hereafter LBT). APLA used a three-dimensional time-dependent hydrodynamical model to simulate the solar surface and applied the same technique as previously used by Asplund et al. (2000) in the determination of the solar iron abundance. They used three free parameters, the continuum level, the oxygen abundance, and the product “\textit{gf} value of the \Ni\textit{i} line times the nickel abundance, \textit{gf}(\textit{Ni})” to match the predicted and observed profiles. By inserting the adopted solar abundance of nickel from Grevesse & Sauval (1998), APLA derived an “astrophysical” \text{log} \textit{gf} value of −2.31 for the \Ni\textit{i} line from the fitted value of \textit{gf}(\textit{Ni}). We quote from the APLA paper: “The \text{log} \textit{gf} for the \Ni\textit{i} line is uncertain. There are seemingly no laboratory measurements for this line.”

We have now determined the \textit{gf}-value of the \Ni\textit{i} line at 6300.34 Å by combining two-step laser-induced fluorescence (LIF) measurements of the radiative lifetime of the upper level with branching fraction measurements using Fourier transform spectroscopy. We have also fitted two isotopic line components (^{58}Ni and ^{60}Ni) to the laboratory \Ni\textit{i} line and derived wavelengths and absolute intensities for both components. These two Ni isotopes account for 94% of the solar nickel abundance. We have reexamined the \textit{LS} composition of the upper energy level of the \Ni\textit{i} transition since it is severely mixed and has no clear \textit{LS} signature. The level was discussed and reassigned in the extensive work on the \Ni\textit{i} spectrum by LBT, and its identity has been further discussed by APLA. Adopting one or another of the “old” (4d e^2P_1) or the “new” (4s2 S_0) assignment makes a difference in the \textit{f}-value of a factor of 400 (a difference in \text{log} \textit{gf} of 2.6) if we consult the database of R. L. Kurucz, which is often used in abundance work using the spectrum synthesis technique. Thus, an experimental value of the oscillator strength will help in understanding the real \textit{LS} composition of the energy level.

2. ATOMIC PHYSICS BACKGROUND

Since the \Ni\textit{i} line studied in this Letter has a great influence on the determination of the oxygen abundance, it deserves special attention. Because of the level mixing, there is a need for an experimental \textit{gf}-value as well as a detailed study of the isotopic composition of the line. The effect of level mixing that makes calculated oscillator strengths very uncertain is a frequent problem in complex spectra. Very drastic cases may occur in modeling stellar spectra in which a calculated spectral line, predicted by means of theoretical atomic data, totally disagrees with the observed feature.

To illustrate the level mixing in the present \Ni\textit{i} case, we have included a small part of the \Ni\textit{i} term diagram in Figure 1, showing the relevant energy levels involved in the discussion as well as in the measurements. The upper level of the line \Ni\textit{i} λ6300 is located at 50276 cm$^{-1}$, and the lower level is $^4D^1_s$, which belongs to the odd parity $3d^84s4p$ configuration. In the first analysis of the \Ni\textit{i} spectrum, Russell (1929) assigned the 50276 level to e^2P_1 of the even parity $3d^84d$ configuration, which seemingly makes the transition to $^2D^1_s$, a “two-electron jump.” The appearance of such a transition can be explained by configuration interaction between $3d^84s4p$ and $3d^84p$, making the line a participant of a regular $4p$→$4d$ transition. Theoretical calculations by LBT confirmed such a level mixing between $^4D^1_s$ and $^2D^1_s$ belonging to $3d^84s4p$ and $3d^84p$, respectively.

In the National Institute of Standards and Technology compilation of iron group elements (Corliss & Sugar 1981), issued before the LBT work, the 50276 level has been given the old

1 Atomic Astrophysics, Lund Observatory, Lund University, P.O. Box 43, SE-22100 Lund, Sweden; sveneric.johansson@astro.lu.se, ulf.litzen@astro.lu.se.
2 Department of Physics, Lund Institute of Technology, P.O. Box 118, SE-22100 Lund, Sweden; hans.lundberg@fysik.lth.se.

According to Kurucz’s calculations of \(\alpha \)-values, both log \(\alpha \) and analyzed the isotopic structure. The 50276 level contained a 90% component of \(^1S_0 \), and the 51457 level was reassigned to the 4 \(^1S_0 \). The Kurucz calculation also confirms the old label of the 50276 level since it was found to contain more than 95% \(^1P_1 \). Strangely enough, the Cowan code calculations suggested by Russell (1929) suggested the 50276 level is indicated to the left.

In the measurements of the radiative lifetime, the 50276 level was populated by applying a two-step pulsed laser excitation with \(^3P^o \) as the intermediate level according to the scheme in Figure 1. The radiative lifetime was derived by a time-resolved observation of the fluorescence light released when the 50276 level decays to the lower odd levels. The experimental setup was similar to the one described and illustrated in a recent paper by Nilsson et al. (2000). Free nickel atoms were created by laser ablation and excited to the level investigated by laser pulses from two Nd:YAG laser-pumped dye lasers operating in the red spectral region. The wavelength of the first step excitation (3664 Å) was reached after frequency doubling and of the second step excitation (4811 Å) after Raman shifting in hydrogen gas. The two 10 ns pulses coincided in time and space during the interaction with the nickel atoms. Fluorescent light was detected using a monochromator and a fast photomultiplier. A digital transient recorder performed the data acquisition. The monochromator was set on one of the decay channels shown in Figure 1. Most of the recordings were taken on the strong 4811 Å line. An average of 1000 single decay events was typically necessary for obtaining a good signal-to-noise ratio in the exponential decay curves. Thirty curves were recorded, and the result for the lifetime of the 50276 level is \(77 \pm 7 \) ns. The uncertainty of the lifetime is a combination of statistical and, although carefully checked, possible systematic errors. The standard deviation of the 30 different measurements is less than 20% of the uncertainty.

4. BRANCHING FRACTIONS AND OSCILLATOR STRENGTHS

We have recorded the Ni i spectrum with the Lund UV Fourier transform spectrometer (FTS) and have also extracted spectra from the Kitt Peak FTS database, previously used in the extensive study of the Ni spectrum by LBT. All spectra are from hollow cathode lamps at various running conditions (pressure and DC). The spectra have been intensity-calibrated by means of branching ratios for internal argon lines (Whaling, Carle, & Pitt 1993), i.e., argon lines produced by the carrier gas in the nickel hollow cathode lamp. The branching fractions have been derived from the calibrated intensities of the spectral lines corresponding to the four decay channels indicated in Figure 1.

Since the lower levels in all transitions studied have short radiative lifetimes, there is no need for any corrections for self-absorption in the light source. According to predictions and observations, the transitions measured account for more than 99% of the decay from the 50276 level, and no residual branching fraction has to be considered. The total decay rate, given by the inverse value of the measured lifetime, has therefore been distributed among the four transitions in accordance with the experimental branching fractions. The results are given in Table 1. The uncertainties in the \(f \)-values are determined according to a procedure suggested by Sikström et al. (2002), and they include estimated errors in lifetime measurements, intensity measurements, and the instrumental response function.

5. DISCUSSION

There are some conclusions that can be drawn from Table 1. First, the astrophysical log \(f \)-value of the \(\lambda 6300 \) line derived by APLA in the fitting of the synthesized profile of the combined [O i] and Ni i lines to the observed solar line is closer to the present measurement than to the value given in the Kurucz database. The astrophysical log \(f \)-value differs by 0.20 dex (≈60%) from the new laboratory value, which has an uncertainty of about 0.05 dex (15%). Second, the triplet content of the 50276 level is overestimated in the calculations by Kurucz and perhaps underestimated in the
calculations by LBT. Another strong piece of evidence for a substantial contribution of the 4s\(^2\)1S\(_0\) state to the 50276 level is the isotope shift observed by LBT for the two strong lines λλ4811, 5780 in Table 1, for which the lower level belongs to the 4p configuration. Using Fabry-Perot interferometry, Schroeder & Mack (1961) made a detailed study of the isotope shift in the lower configurations of Ni \(i\). They found appreciable line shifts in transitions where the upper and lower configurations differ in the number of \(d\)-electrons. By calculating the normal mass shift and estimating the field shift, they attributed a major part of these large shifts to a specific mass shift. The absence of a significant isotopic shift in the 6300 Å line is thus consistent with a major contribution of 3d\(^4\)4s\(^2\)1S\(_0\) to the 50276 level since the configuration of the lower level, 3d\(^4\)4s4p, contains the same number of \(d\)-electrons. However, the observed profile of the laboratory 6300 Å line shows an asymmetry that could be due to isotopic structure. A small isotope shift would indicate a mixing of the upper state with a 3d\(^4\)4d level or a mixing of the lower state with a 3d\(^4\)4p level, or a combination of the two. We have therefore examined the line more closely.

In Figure 2, we show the 6300 Å line as observed in the laboratory Fourier transform spectrum. We have fitted two isotopic line components to the observed feature, by assuming a solar ratio of 0.38 for the abundances of the \(^{60}\)Ni and \(^{58}\)Ni isotopes. We have neglected the other stable isotopes \(^{61}\)Ni, \(^{62}\)Ni, and \(^{64}\)Ni since they contribute only 1.1%, 3.6%, and 0.9%, respectively. Furthermore, \(^{64}\)Ni is smeared out by hyperfine structure. The wavelengths of the two isotopic components in the Ni \(i\) λ6300 line are 6300.335(1) for \(^{60}\)Ni and 6300.355(2) for \(^{64}\)Ni. The uncertainties of 1 and 2 mA, respectively, include errors in the fitting of the line profile and calibration of the laboratory spectrum. The isotope shift of 20 mA is about the same as the distance of 25 mA between the [O\(i\)] line and the center of gravity (c.g.) wavelength for the Ni \(i\) line. Based on the present analysis, we have derived new data for the c.g. of the line (previous values in parentheses are from LBT): \(\sigma = 15867.769\) (0.773) and \(\lambda = 6300.341\) (0.539), and we have inserted the new c.g. wavelength in Table 1. The log \(gf\)-value \((-2.11)\) is the same for each isotopic line component.

The choice of LS label on the 50276 level is not evident, but it is quite clear that the 51457 level belongs to the 4d configuration. This level does not show any isotope shift in the transitions to 4p, which is characteristic for all transitions measured by LBT in which there is no change in the number of \(d\)-electrons. Considering the apparent labeling of the 51457 level and the observed isotope shift in the lines from the 50276 level, the most appropriate label for the 50276 level is 4s\(^2\)1S\(_0\), as suggested by LBT. The observed isotope shift, which is of about the same size as for both 3d\(^4\)4p–3d\(^4\)4s\(^2\) and 3d\(^4\)4s4p–3d\(^4\)4d transitions, indicates level mixing but not the size of it. As pointed out by LBT, an additional part of the problem may be caused by interaction with the unknown \(p^\prime\) configuration, which contains both a \(^1\)S\(_0\) and a \(^3\)P\(_0\) level. Anyhow, the fact that the 50276 level contains a substantial amount of triplet character illustrates clearly the nonphysical meaning and sometimes excessive ambition to assign an LS label to every energy level. However, it may be practical for bookkeeping purposes to have a symbolic name on all energy levels.

6. CONCLUSION

The line [O \(i\)] λ6300 is one of the very few spectral features from which the oxygen abundance in the Sun and cool stars (APLA) can be determined. The line is blended with an Ni \(i\) line, and a detailed study of the Ni \(i\) line at 6300.34 Å reveals an unresolved isotope structure. At least two isotopic line components, separated by 20 mA, have to be included when calculating a line profile to match the λ6300 feature in high-resolution stellar and solar spectra. The log \(gf\)-values for the individual components should then be weighted by the relative abundances of the two isotopes.

In this Letter, we report on the wavelengths and log \(gf\)-values for the two major isotopic components of the Ni \(i\) line. We

<table>
<thead>
<tr>
<th>LOWER LEVEL</th>
<th>(\lambda) (Å)</th>
<th>BRANCHING FRACTION</th>
<th>(gA)-VALUE ((\times 10^3 \text{s}^{-1}))</th>
<th>log (gf)-VALUE</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d(^4)4sp y'D(_1),</td>
<td>6300.341(^b)</td>
<td>0.10</td>
<td>0.13</td>
<td>-2.11</td>
<td>-1.73</td>
</tr>
<tr>
<td>3d(^4)p z'P(_1),</td>
<td>5780.728</td>
<td>0.10</td>
<td>0.13</td>
<td>-2.18</td>
<td>-3.02</td>
</tr>
<tr>
<td>3d(^4)p z'D(_1),</td>
<td>5162.913</td>
<td>0.02</td>
<td>0.03</td>
<td>-2.93</td>
<td>-1.93</td>
</tr>
<tr>
<td>3d(^4)p z'P(_1),</td>
<td>4811.983</td>
<td>0.78</td>
<td>1.01</td>
<td>-1.45</td>
<td>-1.48</td>
</tr>
</tbody>
</table>

\(^b\) From the level at 50276 cm\(^-1\) with a radiative lifetime of 77 ns.

\(^a\) Data for the isotopic line components: \(\lambda(\text{\(^{58}\)Ni}) = 6300.335(1)\) and \(\lambda(\text{\(^{60}\)Ni}) = 6300.355(2)\); both have log \(gf\) = -2.11.
have measured the radiative lifetime of the upper level of the Ni i line using laser techniques and combined it with branching fractions to get the absolute transition probabilities. The branching fractions are derived from calibrated line intensities in a Fourier transform spectrum, which is also used to disentangle the isotopic structure. The new experimental $g\ell$-value differs by 0.2 dex from the “astrophysical log $g\ell$-value” derived by APLA.

An appropriate labeling of the upper level of the Ni i line has previously been discussed by LBT. The additional information obtained in the present work, i.e., the lifetime and isotopic structure, supports the label suggested in that paper.

REFERENCES

Eriksson, K. B. S. 1965, Ark. Fys., 30, 199
Russell, H. N. 1929, Phys. Rev. 34, 821