Values Compared

Rabinowicz, Wlodek

Published in:
Polish Journal of Philosophy

2009

Citation for published version (APA):
VALUES COMPARED*

Wlodek Rabinowicz

Department of Philosophy, Lund University
Wlodek.Rabinowicz@fil.lu.se

Abstract

Gert (2004) has suggested that several different types of value relations, including parity, can be clearly distinguished from each other if one interprets value comparisons as normative assessments of preference, while allowing for two levels of normativity - requirement and permission. While this basic idea is attractive, the particular modeling Gert makes use of is flawed. This paper presents an alternative modeling, developed in Rabinowicz (2008), and a general taxonomy of binary value relations. Another version of value analysis is then brought in, which appeals to appropriate emotions rather than preferences. It is shown how the modeling of value relations could look like from such an emotion-centered perspective. The preference-based and the emotion-based approaches importantly differ from each other, but they give rise to isomorphic taxonomies.

This paper offers an analysis of value relations, by taking its departure in a discussion of parity - a type of value relation introduced by Ruth Chang. If two items that are on a par, they are comparable in value even though neither is better, worse, nor equally as good as the other. Joshua Gert has suggested that this notion of parity can be elucidated if one interprets value comparisons as normative assessments of preference, while allowing for two levels of normativity - requirement (‘ought’) and permission (‘may’).

The basic idea is attractive, but Gert’s modeling of the idea of is flawed. This paper presents an alternative modeling, in terms of permissible preference orderings, and uses the model to construct a general taxonomy of binary value relations. As it turns out, there are fifteen distinct atomic relations of this kind to consider. Another version of value analysis is then brought in, which appeals to appropriate emotions rather than preferences. It is shown how value relations can be modeled given such an emotion-based perspective. The preference-based and the emotion-based approaches importantly differ from each other, but they turn out to give rise to structurally identical taxonomies.

* The first part of this paper draws on Rabinowicz (2008), while the emotion-based modeling of value relations which is developed in the second part is new. I am indebted to Kevin Mulligan and his emotion-research group in Geneva for providing the stimulus to consider the problem from this angle. So many colleagues have given me their comments that I prefer not to try to name them, for fear of forgetting some. Thanks are due to The Bank of Sweden’s Tercentenary Foundation and to the Swedish Research Council for their generous research grants and to the Swedish Collegium of Advanced Study (SCAS) in Uppsala for an excellent research environment. I am much indebted to the editors of PJP and to an anonymous referee for their exemplary efficiency in processing the paper. Last but not least I would like to thank the organizers of the 8th Polish Congress of Philosophy, which convened in Warsaw in September 2008, for giving me an opportunity to present some of the ideas of this paper in the city of my youth.
1. Parity – the fourth form of comparability?

Ruth Chang has argued that two items might be comparable in value even though neither is better than, worse than, or equally good as the other. Instead, they might be on a *par*. (See Chang 2002b; cf. also Chang 1997 and 2002a.) To use her own example, consider two great artists, say, Mozart (x) and Michelangelo (y). While they are comparable in their artistic excellence, it is counter-intuitive to suppose that one of them is better or worse than the other. That they are not equal in value is the conclusion of what Chang calls “the Small-Improvement Argument”.

We are asked to envisage a third artist, \(x^+ \), slightly better than but otherwise very similar to \(x \). \(x^+ \) is a fictional figure – a slightly improved version of Mozart – perhaps Mozart who lived little longer and had time to compose yet another *Requiem* and a couple of additional operas. Now, the idea is that \(x^+ \) can be a better artist than \(x \) without thereby being better than \(y \). This would have been impossible if \(x \) and \(y \) were equally good: Anything better than one would then have been better than both.

Parity is a symmetric relation, just as equal goodness, but unlike the latter it is not transitive. In the example above, \(x \) is on a par with \(y \), which is on a par with \(x^+ \), but \(x \) is not on a par with \(x^+ \): By hypothesis, \(x^+ \) is better than \(x \). Again, unlike equal goodness, parity is an irreflexive relation: No item is on a par with itself.

So, if the Small-Improvement Argument is correct, \(x \) and \(y \) in our example aren’t equally good. Nor is any of them better than the other. Or, at least, this is what we have assumed. That they nevertheless are comparable in value, rather than incomparable, is established by Chang by “the Unidimensional Chaining Argument”. This time we envisage some item \(y_0 \) that is worse than both \(x \) and \(y \), while being similar in kind to one of them, say, to \(y \). Like Michelangelo, \(y_0 \) is a sculptor but of a much inferior quality. Then we are asked to imagine a finite sequence of artists starting with \(y_0 \) that goes all the way up to \(y \), in which every successive element in the sequence in some respect slightly improves on its immediate predecessor, while being just like it in all the other relevant respects. Clearly, if \(y_0 \) is worse than \(y \) in several respects, improvements in the sequence need to be made in each of these respects, perhaps many times, in order to reach \(y \) from \(y_0 \). But in each step in the sequence there is, we assume, a small change in one respect only. Now, it would seem that no such small ‘unidimensional’ improvement can affect comparability: It cannot take us from an item that is comparable with \(x \) to one with which \(x \) is no longer comparable. Consequently, since the first element in the sequence is comparable with \(x \) (by hypothesis, \(y_0 \) is worse than \(x \)), the same should apply – by mathematical induction – to each element that follows, up to and including the last element, \(y \).

That a small unidimensional improvement from one item to another cannot make comparability with some third item disappear is an assumption meant to apply only to cases in which value comparisons aren’t conducted in accordance with some algorithmic rule, but instead are arrived at in an informal manner, by balancing different aspects of comparison against each other. While algorithmic rules might allow for sharp breaks in

comparability occasioned by small changes, such breaks are not to be expected, Chang suggests, in the case of informal balancing procedures.

Even with this qualification, Chang’s chaining argument is not especially convincing. It is too similar to a *sorites* to allay the suspicion that Chang simply exploits potential indeterminacy (*vagueness*) in our judgments of comparability. The starting point of the sequence (y_0) might be determinately comparable with x and the end-point (y) might be determinately not comparable with x, *pace* Chang, if the sequence contains cases of indeterminate (vague) comparability somewhere in-between. This could be the reason for the apparent absence of sharp breaks as we move from y_0 to y. The possibility of vagueness also threatens the small improvement argument: It might be that it is indeterminate whether x is better than, worse than, or equally as good as y, at the same time as it *is* determinate that one of these three relations does obtain between these two items. This is compatible with x' being determinately better than x but not determinately better than y. Chang admits that the argument for parity as a fourth type of evaluative comparability remains incomplete until it is shown, as she tries to do, that parity phenomena cannot be explained away as instances of vagueness, or simply as mere gaps in our evaluative knowledge. Here, however, I won’t discuss these vexed issues any further, as my purpose is not to establish the actual existence of parities but only to show that such an evaluative relation is conceptually possible.

2. Value comparisons as preference assessments

Gert (2004) proposes to elucidate parity by an appeal to a general format for the analysis of comparative value judgments: The main idea is that such judgments can be understood as *normative assessments of preference*. This idea as such isn’t new. According to the view that goes back to Brentano (1969) and counts among its proponents Ewing (1947, 1959), McDowell (1985), Wiggins (1987), Gibbard (1990, 1998) and Scanlon (1998), *to be valuable is to be a fitting object of a pro-attitude*. On this ‘fitting-attitudes analysis’ of value, an item is valuable insofar as it has features that make favoring it appropriate. ‘Fitting’, ‘appropriate’, ‘ought’, etc, stand for the normative component in this type of analysis, ‘favoring’ is a place-holder for a pro-attitude, the features of the object that make favoring appropriate are its ‘value-making’ properties, and different ways of favoring – desire, admiration, cherishing, etc. – correspond to values of different kinds: desirability, admirability, preciousness, etc.\(^2\) For ‘better than’, the relevant way of favoring has commonly been taken to be preference: “... we define ‘better’ as ‘what ought to be preferred’” (Ewing 1959, p. 85) “When we call one good ‘better’ than another, we mean that the one good is preferable to the other. In other words, it is *correct to prefer* the

\(^2\) Scanlon (1998, p. 97) calls this analysis “the buck-passing account of value”, since it transfers the reason to favor from the object’s value to its value-making properties. Some of the difficulties facing this format of analysis are discussed in Rabinowicz & Ronnow-Rasmussen (2004) and (2006). One such difficulty - “The Wrong Kind of Reasons Problem” - is that the pro-attitude may be required not because of the features that make the object valuable, but rather because the pro-attitude itself would be valuable (for its own sake or for the sake of its effects) or appropriate for purely deontological reasons, not having to do with the value of its object. Cases like this must be excluded if the analysis is to be acceptable. Another difficulty is that there is a danger of circularity in this approach if either the normative component (requirement) or the attitudinal component themselves need to be analyzed in terms of the concept of value. For some remarks on this latter kind of potential circularity, see below.
one good, for its own sake, to the other.” (Brentano 1969 [1889], p. 26, italics in the original)

Gert takes the same line. He interprets preferences as dispositions to choose and adopts as the normative component in his analysis of betterness the notion of rational requirement:

\[\text{(Better)} \text{ An item } x \text{ is better than another item } y \text{ if and only if it is rationally required to prefer } x \text{ to } y.\]

Using the concept of rational requirement as the normative component presupposes that we are thinking of subjects who are familiar with the items under consideration: Preferring the better item could not be rationally required of a subject who lacks relevant information. What this assumption of epistemic access exactly amounts to is not easy to spell out. On pain of circularity, we cannot take it to require familiarity with the value of the items that are being compared. Rather, what one must be familiar with are the non-evaluative properties of the items under consideration.\(^4\) In what follows, however, this matter will not be further discussed.\(^5\) Another question I will ignore is whether preferences and attitudes in general, insofar as they remain outside our direct voluntary control, can at all be subject to requirements. I think they can, but I will not pursue this discussion here. Still another objection that won’t be discussed might be raised by the adherents of the so-called satisficing view (cf. Slote 1989).\(^6\) On that view, it is sometimes permissible to choose a worse item rather than a better one, even if one is fully aware of this difference in value, provided that the worse item is 'good enough'. If this position were correct, the analysis of betterness in terms of required preference would not be viable, if requirements on preference imply requirements on choice. I have tried to deal with this objection in (Rabinowicz 2008).

Let’s continue with the analysis of evaluative relations. Being worse is simply the converse of being better. Thus,

\[\text{(Worse)} \text{ x is worse than } y \text{ if and only if it is rationally required to prefer } y \text{ to } x.\]

\(^3\) Originally, Gert accounts for betterness in terms of normative assessments of choices rather than preferences. Thus, he interprets “better” as meaning something like “to be chosen, on pain of having made a mistake” (ibid., p. 499). But as one reads on, it becomes clear that it is preferences, understood as choice dispositions, which are the primary object of assessments.

\(^4\) Cf. C. D. Broad’s formulation of the fitting-attitudes analysis: "I am not sure that ‘X is good’ could not be defined as meaning that X is such that it would be a fitting object of desire to any mind which had an adequate idea of its non-ethical characteristics.” (Broad 1930, p. 283; my italics)

\(^5\) Some philosophers nowadays deny that rational requirements are genuinely normative. If the reader shares these doubts, she can replace in what follows all occurrences of “it is rationally required that” with, say, “there are conclusive reasons to” or simply with “ought”. Similarly, “it is rationally permissible that”, which will be introduced later, can be replaced with “there are no conclusive reasons not to” or simply with “may”. Replacing rationality with reasons has an additional advantage: On the ‘objective’ view of reasons, which is currently dominant among moral philosophers, the existence of reasons for preference does not presuppose that the subject is familiar with the items to be compared. Thus, the issue of epistemic access is finessed in this way.

\(^6\) See his Beyond Optimizing, Cambridge: Harvard University Press, 1989. I am indebted to Jonas Olson for bringing this objection to my attention. Chang also raises this issue in her reply to Gert (Chang, 2005).
Similarly, equal goodness is analyzed as required equi-preference:

\((\text{Equal})\ x\ \text{and}\ y\ \text{are equally good}\) if and only if it is rationally required to be indifferent between \(x\) and \(y\).

Up to this point, there has been nothing new in Gert’s proposal. The novelty of his approach comes with the observation that the normative component can be weakened. Normativity admits of two levels: the level of requirement (‘ought’) and the level of permission (‘may’). Requirement and permission are dual notions; something is required if and only if its absence is not permissible. In symbols, \(Ox \iff \neg P\neg x\). Or, equivalently, something is permissible if and only if its absence is not required: \(Px \iff \neg O\neg x\). Requirement entails permission, \(Ox \Rightarrow Px\), but not \textit{vice versa}.

It is the availability of permission – the weaker level of normativity – that makes room for parity:

\((\text{Par})\ x\ \text{and}\ y\ \text{are on a par if and only if} (i)\ \text{it is rationally permissible to prefer} x\ \text{to} y,\ \text{and} (ii)\ \text{it is rationally permissible to have the opposite preference.}\)

That the preference for one item and the opposing preference for the other item are both permissible does not mean of course that it is permissible to have both at the same time. But it is permissible to have each. Gert describes situations like this as follows:

\(\ldots\) only very rarely do we think of our particular personal preferences as the uniquely rational ones. This view of preference and value allows that two people in the same epistemic situation, who have the same perfectly precise standards for assessing the value of items with respect to \(V\) and who take the same interest in whether or not something has value \(V\), could make different, but equally rational choices between two items, when the relevant value is value \(V\). (Gert 2004, p. 494)\)

As an aside, I should point out that Gert’s own definition of parity is much more demanding than the one suggested above: Apart from (i) and (ii), he imposes a further condition that has to be satisfied if parity is to hold. Since that condition has unwelcome implications (cf. Rabinowicz 2008), there are good reasons to stick to the definition I have proposed.\(^8\)

The introduction of two levels of normativity is Gert’s original contribution to the ‘fitting attitudes’-analysis of value. The standard approach has otherwise been to give the strong interpretation to the normative component.\(^9\)

\(^7\) In this quotation, \(V\) stands for what might be called a covering value. Gert and Chang take it that comparisons between items always are made with respect to some such covering value or consideration, which may differ depending on the context of comparison.

\(^8\) However, for a substantially different definition of parity – one that is not based on the ‘fitting attitudes’ approach – see Carlson (2007).

\(^9\) See, for example, Gibbard 1998, p. 241: “… something is desirable if it … would be \textit{warranted}, if it would make \textit{sense} to desire it, if a desire for it would be \textit{fitting or rational}. Likewise, the preferable thing is the one it would be rational to prefer.” Unlike Gert, Gibbard in this passage does not clearly distinguish between a required and a merely permissible preference. But since preferability is an asymmetric relation, Gibbard’s “warranted”, “fitting” and “rational” must be interpreted as cognates of ‘required’ rather than ‘permissible’. For the permissibility of a preference is logically compatible with the opposing preference also being permissible.
What about incomparability in value? While Gert does not address this issue, his framework allows for an extension that makes room for incomparability. On the choice-dispositional interpretation of preference, to prefer x to y is to be disposed to opt for x rather than for y if one has to make a choice between the two items in question. Indifference is also a type of choice disposition: To be indifferent between two items is to be equally prepared to make either choice. For some pairs of items, however, we might lack a choice disposition altogether. If necessary, we would make a choice, but not because we are so disposed. In the case of indifference, the subject smoothly proceeds to decision – Buridan’s ass is just a philosopher’s fiction. But in the absence of a disposition to choose, we typically experience the choice problem as internally conflicted: We can see reasons on each side, but we cannot (or will not) balance them off. If we have to, we make a choice, but without the conflict of reasons being resolved. It seems, then, that not all of our choices are manifestations of choice dispositions.

Let me try to clarify this suggestion a little bit. In principle, I suppose it is always possible to explain one’s choices as reactions to stimuli impinging on one’s internal state, where the latter is a configuration of factors that together make one react to the stimuli in a certain fashion. So, in this sense, one always has a disposition to choose. But I am trying to get at a stronger sense of a choice disposition – the sense in which such a disposition is present only if I would make a deliberate and reasoned choice among the items I am confronted with. In this stronger sense, of course, not everything one chooses is due to a choice disposition, since not every choice is a reasoned one. It is arguable that if the notion of preference used in the analysis of value relations is to be understood in choice-dispositional terms, then it should refer to a choice disposition in this stronger sense.

Assuming that choice dispositions in this sense can be absent, their absence or presence might be subject to normative assessments. If the absence of a choice disposition with regard to a pair of items is rationally required, then – I would suggest – we have a case of incomparability. That is,

\[(\text{Incomp}) \ x \text{ and } y \text{ are incomparable} \text{ if and only if it is rationally impermissible to either prefer one to the other or be indifferent.}\]

Isn’t this definition too demanding? Shouldn’t it be enough for incomparability that the absence of a choice disposition is rationally permissible rather than that it is required? Such a lenient criterion would be a bit awkward, I think. We do not say that something is undesirable if it is merely permissible not to desire it. It is undesirable only if desiring it

10 An indirect evidence for the absence of choice dispositions can sometimes be obtained from a sequence of choices: An agent who prefers x^\ast to x but lacks dispositions to choose with regard to pairs (x^\ast, y) and (x, y), might first agree to exchange x^\ast for y, then agree to exchange y for x, and thus end up with an item (x) she disprefers to the one she has started with (x^\ast). However, such a choice sequence could also be due to other causes: changes in preference, or outright irrationality (cyclical preferences).

11 Indifference does not preclude choice in this qualified sense. When two options come out as equal in my balancing of reasons and I proceed to choose one of them, my decision is, I would say, reasoned and deliberate even though I could just as well have chosen the other option instead.

12 See Rabinowicz and Rønnow-Rasmussen (2004), pp. 414-418, for a defence of the claim that the pro-attitudes to which one refers in the fitting-attitudes analysis of value should be reason-based.
is impermissible in some sense: if the absence of desire is required. The case of incomparability seems analogous. We shouldn’t say that two items are incomparable if the absence of both preference and indifference is merely permissible. However, if we wish, we can introduce this weaker relation by a stipulative definition:

(Weak Incomp) x and y are weakly incomparable if and only if it is rationally permissible to neither prefer one to the other nor be indifferent.

Is it plausible to expect the existence of incomparabilities? If the domain under consideration contains items from different ontological categories, incomparabilities will be easy to find. It is just as irrational to prefer, say, a person to a state of affairs, or an event to a character feature as to be indifferent between them. Preference or indifference don’t make sense in such a case. But what about items belonging to the same category? Can they ever be incomparable? Well, logically it is possible, of course, but it is unclear whether this logical possibility has any actual instantiations. The most promising examples might be cases of tragic dilemmas, such as Sophie’s Choice. It is arguable that when you have to choose which of your children is to be saved, preferring one of the options is as impermissible as being indifferent. But is it a rational impermissibility or a moral one? If the latter, the example is not convincing. Still, in this paper, I don’t need to determine whether ‘intra-categorial’ incomparability has actual instantiations. For my purposes, it is enough if we can draw a map of conceptual possibilities concerning value relations.

What, then, about comparability in value? In one sense,

(Comp) x and y are comparable if and only if they are not incomparable.

In this sense comparability and weak incomparability are not mutually exclusive. Full comparability of items would mean more than that: It would exclude the absence of a choice disposition. In other words,

(Full Comp) x and y are fully comparable if and only they are not weakly incomparable.

Parity, as we have seen, is thought by Chang to be a form of comparability. Our definitions confirm this: They imply that, if two items are on a par, they are comparable. However, they need not be fully comparable. For some pairs of items, it may be permissible to prefer any of them to the other and also permissible to have no choice disposition at all with regard to the items in question.

3. Interval modeling

In his formal modeling of different value relations, Gert assumes that we can quantitatively measure the strength of preferences for various items in the domain and that for each item x in the domain there is a range of permissible preference strengths with respect to x. This range forms an interval, which we shall denote by $[x_{\text{min}}, x_{\text{max}}]$, with x_{min} standing for the interval’s lower bound and x_{max} for its upper bound.13 Any

13 While Gert does not explicitly specify the scale of measurement, his discussion suggests that he has in mind something like an interval scale, i.e. one in which only the unit and the zero point are arbitrarily chosen. However, as far as I can see, a purely ordinal scale on which each item x is assigned two numerical values, x_{min} and x_{max}, with the latter value being greater than the former (or with both values being equal, in a limiting case), would be sufficient for his purposes.
combination of permissible preference strengths for different items is assumed to be itself permissible. For example, suppose that items \(x \) and \(y \) are assigned partially overlapping ranges \([2, 4]\) and \([1, 3]\), respectively. Then it is permissible to prefer \(x \) with, say, strength 2, and \(y \) with equal strength, which means it is permissible to be indifferent between these two items. Preference strengths such as, say, 4 for \(x \) and 1 for \(y \) also are permissible, which means it is permissible to prefer \(x \) to \(y \). Finally, it is permissible to prefer \(y \) to \(x \), since the upper bound of the rationally permissible preference range for \(y \) (3) is higher than the lower bound of the range for \(x \) (2). Clearly, then, it is a case in which \(x \) and \(y \) are on a par: Preferring one to the other is permissible and the opposite preference is permissible as well.

As we know, \(x \) is better than \(y \) if and only if it is required to prefer \(x \) to \(y \). Now, in Gert’s interval model, preferring \(x \) to \(y \) is required just in case the lower bound of the range for \(x \) is greater than the upper bound of the range for \(y \). In other words, the weakest permissible preference for \(x \) has to be stronger than the strongest permissible preference for \(y \). This gives Gert his “Range Rule”:

The Range Rule: \(x \) is better than \(y \) if and only if \(x^{\text{min}} > y^{\text{max}} \).

For instance, suppose that \(x \) is assigned range \([2, 4]\), as before, but the range for \(y \) now is \([0, 1]\). Since 2, the lower bound for \(x \), is greater than 1, the upper bound for \(y \), \(x \) is better than \(y \).

As has been shown in Chang (2005) and Rabinowicz (2008), there are several problems with this interval modeling of value relations. Some of these problems have to do with the representation of equality in value, and with the difficulties in representing incomparability. But by far the most serious objection is that the model does not even get the betterness relation right: It is unable to represent plausible structures of betterness relationships between items. Consider again our example with Mozart, Michelangelo and Mozart\(^+\). Add a second imaginary figure – Michelangelo\(^+\), a slightly improved version of Michelangelo. Just as Mozart\(^+\) is a better artist than Mozart, so is Michelangelo\(^+\) a better artist than Michelangelo. And just as Mozart\(^+\) is not better than Michelangelo, so is Michelangelo\(^+\) not better than Mozart.\(^{14}\) Now, we can easily prove that this structure of value relationships between four items cannot be represented by any interval modeling. This is a general result. The interval modeling implies, for all items \(x^+, x, y^+ \) and \(y \),

\[(\text{Int}) \text{ If } x^+ \text{ and } y^+ \text{ are better than } x \text{ and } y, \text{ respectively, then } x^+ \text{ is better than } y \text{ or } y^+ \text{ is better than } x.\]

\(^{14}\) For a similar example, see Danielsson (1983), (1998). It involved two trips to different locations, \(x \) and \(y \), and the same two trips with some small extra inducements added, \(x^+ \) and \(y^+ \).

\(^{15}\) Proof: Since \(x^+ \) is better than \(x \) and \(y^+ \) is better than \(y \), the Range Rule implies that (i) \(x^{\text{min}} > x^{\text{max}} \) and (ii) \(y^{\text{min}} > y^{\text{max}} \). Now, two cases are possible: (1) \(x^{\text{max}} \geq y^{\text{max}} \), or (2) \(y^{\text{max}} \geq x^{\text{max}} \). But (i) and (1) together imply that \(x^{\text{min}} > y^{\text{max}} \), i.e., that \(x^+ \) is better than \(y \), while (ii) and (2) imply that \(y^{\text{min}} > x^{\text{max}} \), i.e., that \(y^+ \) is better than \(x \).

If a betterness relation satisfies (Int), along with being transitive and asymmetric, then it is a so-called interval order. Interval orders are exactly those relations that are representable by interval modelings that use the Range Rule. (Cf. Fishburn 1970, pp. 20-3; this result holds for all countable item domains.) Some of the problems mentioned above could be avoided by weakening the Range Rule. On this weakening, \(x \) is better than \(y \) iff \(x^{\text{max}} > y^{\text{max}} \) and \(x^{\text{min}} > y^{\text{min}} \). Thus, it is no longer required that \(x^{\text{min}} > y^{\text{max}} \). This means we give
Since this general implication is unwelcome, as we just have seen, it follows that the modeling is unfit to represent value relations.

What has gone wrong here? Consider the comparison between Mozart and Mozart+. The latter is a slightly better artist, but surely this does not mean that the weakest rationally permissible preference for the latter is stronger than the strongest rationally permissible preference for the former? If the range for Mozart is [10, 30], for example, then the range for Mozart+ should be slightly transposed upwards, say to [11, 31]. Thus, there should be a significant overlap between the two ranges. But then a weak permissible preference for Mozart+ will be weaker than a strong permissible preference for Mozart. To avoid the undesired conclusion that it is permissible to prefer the worse item to the better one, we would need to disallow combining a strong preference for Mozart with a weak preference for Mozart+. However, the interval modeling lacks resources for disallowing, or prescribing, particular combinations of preference strengths for various items. There is nothing in the model to ensure that whatever preference one might have for the worse alternative, one is rationally required to prefer the other alternative even more. This, as I see it, is the main reason why the interval modeling doesn’t work.

4. Intersection modeling

If not intervals, then what? The interval modeling lacks resources to specify permissible combinations of preference strengths for different items. The remedy is to think of permissible preferences in a holistic way. Instead of stating what’s permissible for each item separately, the right solution is to specify permissible preference orderings of the item domain taken as a whole. In general, a preference ordering of a domain specifies for each pair of items \(x, y \), which of the four possible preferential states obtains with regard to \(x \) and \(y \): either \(x \) is preferred to \(y \), or \(y \) is preferred to \(x \), or \(x \) and \(y \) are equiprefered (indifference), or none of the above applies, i.e., we have a preferential gap. Now, some of such orderings are permissible, while other orderings are not. If Mozart+ is a better artist than Mozart, he will come above Mozart in every permissible ordering. Mozart’s standing may vary, but however high it is, Mozart+’s standing will be even higher.

Let \(K \) be the class of all permissible preference orderings. This class may be assumed to be non-empty, i.e., at least one ordering of the items in the domain should be permissible. The orderings in \(K \) need not have a quantitative representation. It might not be meaningful to specify the relative strengths with which different items are being preferred. Indeed, it might not even be meaningful to assign numbers to items to indicate their relative positions in the ordering. For an ordering to be representable by such a number assignment, it has to be complete, i.e., it mustn’t contain any gaps. Since we need to make room for incomparabilities and thus to allow for preferential gaps, completeness cannot be assumed for members of the ‘permissible’ class \(K \). We do assume, however, that all the orderings in \(K \) are well-behaved at least in the following sense: In every such
permissible ordering, (i) preference is a strict partial order, i.e., it is an asymmetric and transitive relation, (ii) indifference is an equivalence relation, i.e., it is transitive, symmetric and reflexive, and (iii) in case of indifference between two items, any \(z \) preferred/dispreferred to one of these items is preferred/dispreferred to the other.\(^{16}\)

In terms of \(K \), we can now define the relation of betterness between items as the intersection of permissible preferences:

\[(B) \text{ } x \text{ is better than } y \text{ if and only if } x \text{ is preferred to } y \text{ in every ordering in } K. \]

This is just another way of saying that \(x \) is better than \(y \) if and only preferring \(x \) to \(y \) is required.

To exemplify how this works, consider again the example with four items, Mozart, Mozart\(^+\), Michelangelo and Michelangelo\(^+\). Suppose that only three preference orderings of these items are permissible. In each column below, which represents one such ordering, the items are ordered from the most preferred at the top to the least preferred at the bottom. Equi-preferred items are placed on the same level. In this toy example, all permissible preference orderings lack gaps. Obviously, this need not be the case in general.

<table>
<thead>
<tr>
<th>(P1)</th>
<th>(P2)</th>
<th>(P3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mozart(^+)</td>
<td>Michelangelo(^+)</td>
<td>Mozart(^+), Michelangelo(^+)</td>
</tr>
<tr>
<td>Mozart</td>
<td>Michelangelo</td>
<td>Mozart, Michelangelo</td>
</tr>
<tr>
<td>Michelangelo(^+)</td>
<td>Mozart(^+)</td>
<td></td>
</tr>
<tr>
<td>Michelangelo</td>
<td>Mozart</td>
<td></td>
</tr>
</tbody>
</table>

The intersection of \(P1 \), \(P2 \) and \(P3 \) gives us exactly the betterness structure of our example: \(x^+ \) and \(y^+ \) are better than \(x \) and \(y \), respectively, since \(x^+ \) comes above \(x \) and \(y^+ \) comes above \(y \) in each ordering. At the same time, no other betterness relationships obtain between these four items, just as we have stipulated.

Moving now to other value relations, it is easily seen how equality in value, parity, incomparability, etc. are definable in this modeling:

\(^{16}\) This list of conditions could be simplified if we chose weak preference (i.e. preference-or-indifference) as our primitive notion. In terms of that notion, both preference and indifference could then be defined in the standard way: preference as weak preference obtaining in just one direction and indifference as weak preference in both directions. Then our three conditions on permissible preference orderings would boil down to the assumption that a permissible weak preference relation is a quasi-ordering (i.e. transitive and reflexive).

\(^{17}\) The intersection modeling is based on an old idea, which goes back to Sen 1973, ch. 3. (See also Atkinson 1970.) But Sen’s “intersection approach” is not meant to be an analysis of betterness in terms of permissible preference orderings. Instead, he takes it to be a construction of the relation of definite betterness from a class of value orderings, each of which reflects specific value commitments or specific evaluative aspects of the items under consideration. Also, on his approach, incompleteness only shows up in the resulting relation, but not in the underlying orderings. By contrast, our modeling allows preference orderings themselves to be gappy. (In other places, such as Sen 1997, he does discuss incomplete preferences. But there he does not suggest applying the intersection operation to sets of such potentially incomplete preference orderings.)
(E) Two items are *equally good* if and only if they are equi-preferred in every ordering in K.

(P) x and y are *on a par* if and only if K contains two orderings such that x is preferred to y in one and y is preferred to x in the other.

(I) x and y are *incomparable* if and only if every ordering in K contains a gap with regard to x and y.

(WI) x and y are *weakly incomparable* if and only if some ordering in K contains a gap with regard to x and y.\(^{18}\)

The modeling is so straightforward that one might wonder whether it adds anything to the analysis of evaluative relations we have presented in section 2 above. Which would be ok, I think. It is always a risk if a formal modeling goes much beyond an informal analysis. It might then give rise to problems that are only the artifacts of formalization. Still, the intersection model is not perfectly innocuous. By letting K be non-empty, we have excluded situations in which *nothing* is rationally permissible with respect to some pair of items, not even a preferential gap. More importantly, the modeling allows us to derive formal properties of value relations from the corresponding conditions imposed on permissible preference orderings. Thus, we now can prove (i) that betterness is transitive and asymmetric, (ii) that equal goodness is an equivalence relation, and (iii) that whatever is better than, worse than, on a par with or incomparable with one of equally good items must have exactly the same value relation to the other item.\(^{19}\)

Indeed, it is somewhat worrying that the model makes formal features of value relations less secure than one might wish them to be. As an example, consider betterness. That this relation is transitive would seem to be a conceptual truth. But, in the intersection modeling, the transitivity of betterness is grounded in the transitivity of preference orderings in K. That transitivity is a condition on permissible preference orderings might seem like a very plausible normative requirement. But it might well be doubted whether this requirement is as firmly established as the corresponding condition on betterness. Similar remarks apply to other formal features of value relations that are derivable in the modeling only in virtue of the requirements we have imposed on permissible preference orderings (requirements that the *impermissible* orderings could conceivably violate). I have to admit that this is a weakness in my proposal, which I don’t know how to deal with.

Let’s move to other matters, though. We now have all we need for a general taxonomy of dyadic value relations. In the table below, each column describes one type of a value relation, by specifying all the preferential attitudes that are permissible with regard to a pair of items. There are four kinds of such attitudes to consider: preference (\succ),

\(^{18}\) As defined, weak incomparability is a broader notion than incomparability: it is meant to include the latter as a special case.

\(^{19}\) A completely innocuous modeling would simply specify for each pair of items in the domain which preferential attitudes, if any, are permissible with regard to these items. A more informative, but still innocuous modeling would make use of the class K of permissible preference orderings, but abstain from imposing any special conditions on this class. Working with such models would not allow us to draw any *apriori* implications concerning the formal properties of value relations.
indifference (≈), ‘dispreference’ (≺), i.e. preference in the opposite direction, and a gap (/). There is a plus sign in a column for every attitude that is permissible in a given value type. Since for any two items at least one kind of preferential attitude towards these items must be permissible (if \(K \) is non-empty), each column must contain at least one plus sign. The number of columns equals the number of ways one can pick a non-empty subset out of the set of four possible preferential attitudes. As there are fifteen such non-empty subsets, the table has fifteen columns. For example, in type 7, all preferential attitudes except for the gap are permissible, while in type 15, which corresponds to incomparability (I), gap is the only permissible attitude. In type 1, which corresponds to betterness (B), the only permissible attitude is preference, i.e., preferring one item to the other is required. And so on.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≈</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≪</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>W</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The columns in the table stand for atomic types of value relations. Unions of atomic types, such as parity (P, types 6 – 9), comparability (types 1 -14), or weak incomparability (types 8 - 15), form types in a broader sense of the word. While Chang was right to suggest that parity is a form of comparability, parity is not an atomic type. In this respect, it differs from the three traditional comparative relations: better (B), worse (W), and equally good (E).

As is easily seen, most of the atomic types of value relations have not been identified before, which explains why they lack standard labels. For example, if \(x \) and \(y \) are related as in type 2, it is rationally required to either prefer \(x \) to \(y \) or to be indifferent between these items. But then it seems appropriate to say that \(x \) is at least as good as \(y \), despite the fact that \(x \) is neither better than nor equally as good as \(y \). Thus, it seems that ‘at least as good as’ should be defined as the union of types 1, 2 and 3, rather than as the union of types 1 and 3 as the traditional analysis would have it. In other words, the standard definition of ‘at least as good as’ as ‘better than or equally as good as’ is inappropriate. Our modeling also shows that there are more forms of comparability that the four that have been distinguished by Chang: better, worse, equally as good as, on a par.

The fifteen atomic types we have listed are all conceptually possible. But some of them might not represent ‘real’ possibilities. For example, can two items be related to each other in the way specified in columns 6 or 8? It might seem that if two objects are on a par, i.e., if it is permissible to prefer one to the other and permissible to have the opposing preference, then it should also be permissible to be indifferent between the
items in question. This requirement, which – so to speak - imposes a constraint of *convexity* on the class of permissible preference orderings, would exclude types 6 and 8. One might perhaps also require that preferential gaps with regard to items that are on a par should always be permissible. This would exclude types 7 and 8. Given both requirements, only type 9 would be left for parity. Notice that these extra requirements importantly differ from such conditions as, say, transitivity of preference or symmetry of indifference. The latter impose constraints on each ordering in K. The extra requirements instead impose constraints on class K taken as a whole: They state that K must contain orderings of certain kinds if it contains orderings of certain other kinds.

Before I finish this section, let me take up a natural objection. The analysis presented above reduces value relations to permissible preferences, with preferences being interpreted as choice dispositions. But the concept of preference could also be given a more ‘cognitive’ interpretation. More precisely, it might be thought that preference essentially involves a value comparison; Insofar as I prefer x to y, I must consider x to be better then y. Now, this ‘cognitivist’ conception of preference leads to a problem for our analysis. If betterness is analysed in terms of required preference, while preference in its turn essentially involves a judgment of betterness, then we have an analytic circle at our hands: Someone who didn’t know the meaning of “better than” would not become wiser with such an explanation.

This, by itself, need not be seen as a serious problem. After all, every competent English speaker knows what “better than” means and it is not the purpose of philosophical analyses to provide linguistic explanations. That betterness is related to preference and requiredness in the way the analysis stipulates is an informative claim, whether or not preference in its turn is an attitude that essentially involves a comparative value judgment. There is, however, a related and more serious objection to consider in this connection. That objection primarily concerns our account of parity: If x and y are on a par, then both the preference for x over y and the opposite preference are permissible: each of them is ok, so to speak. However, if the preference for x involves a judgment that x is better than y, how can it be ok to prefer x if x is not better than y (as it can’t be if it is on a par with y)? How can it be ok to accept a false judgment?21

The objection is well-taken: The ‘judgmental’ interpretation of preference does not go together with the analysis of parity. Does it mean then that, in order to save this analysis, we have to reject the cognitivist interpretation of preferences altogether and fall back on the purely choice-dispositional account? Not necessarily; there is also another possibility. One might try to interpret preferential states in perceptual rather than judgmental terms. According to such an approach, preference is more akin to a value *perception*, rather than to a value judgment: For a preferrer, x *appears* as better than y. Such an appearance can

20 However, in private communication, David Braddon-Mitchell has offered the following amusing example of a comparison in which opposing preferences are permissible, but indifference seems impermissible. Consider analytic and continental philosophy. It might be permissible to prefer the former to the latter or to have the opposing preference (or to have a preferential gap in this case), but it does seem irrational to be indifferent between the two, assuming that one is familiar with the items that are being compared.

21 This objection was put forward to me by Andrew Reisner.
of course be unreliable and it can be known to be so by the subject. Consider an analogy: A stick is being immersed in water. I see it as broken, even though I very well know it is not. Something similar can be in play in the case of value comparisons: To the extent I prefer one item to another, I ‘see’ it as better, even though I realize it is not if I judge both items to be on a par. The conclusion thus seems to be that our analysis could be defended even on a cognitivist view of preferences, if the latter are interpreted on such perceptual lines. But a more thorough discussion of this matter must await another occasion.22

5. Getting emotional

Does the account of value relations in terms permissible preferences impose any ontological restrictions on the relata of value relations? According to an influential view, the objects of preference are states of affairs (particular or generic): A subject prefers one state to be the case rather than another. On a different but related view, preferences concern not states of affairs but properties of the subject: The subject prefers to read rather than to sleep, to listen to Mozart rather than to watch TV, to live in a world in which there are rain forests rather than in one in which they have been cut down, etc.23 If some such restrictive view about possible objects of preference is correct, the analysis presented above would face serious problems. Value relations between such items as, say, persons or concrete things would be difficult to account for, unless these relations somehow could be reduced to relations between states or properties. Thus, that Mozart and Michelangelo are on a par might perhaps be interpreted as a claim about the value relation between two states of affairs, say, the existence of Mozart an the existence of Michelangelo. Or it might be interpreted as a claim about the relation between two properties of the subject: listening to the music by Mozart might be on a par with looking at the sculptures by Michelangelo. Whether some such reducibility claim is defensible or not is a difficult matter. But if reductions of this kind would turn out to be unworkable, we would be left with a format of analysis that cannot accommodate value relations obtaining between other objects than states of affairs and their ilk.

The account presented above has a further shortcoming: For many kinds of value, it would seem that their analysis should appeal to fitting emotions rather than to fitting preferences or desires. Thus, think of such value characteristics as admirable, venerable, wonderful, enjoyable, awesome, funny, dazzling, thrilling, exhilarating, etc. This list of emotion-based values can obviously be made very long. It would be useful to provide an account of dyadic relations even for values like these – an account that elucidates

22 This interpretation of preferences and desires as potentially unreliable and fallible perceptions of value is developed in Graham Oddie’s recent book (Oddie 2005). A similar idea, though applied to emotions, is discussed but then finally rejected by D’Arms and Jacobson (2003) under the label of “quasijudgmentalism”. D’Arms and Jacobson argue that while we cannot adequately describe proattitudes without recourse to some evaluative concepts, this does not mean that the subject of a proattitude must herself have access to the concepts we need to make use of in the description. Note, however, that even on this position the account of value in terms of fitting proattitudes comes out as being circular. For a short discussion of the circularity objection, see Rabinowicz and Rønnow-Rasmussen (2006).

23 David Lewis (1979). Such restrictions on the objects of preference would be opposed by someone like Brentano. (See Chisholm 1986, chs 2 and 3.) For Brentano, however, preferences were emotive attitudes. If one interprets preferences as dispositions to choose, it is more difficult to resist the conclusion that objects of preferences have to be state-like or property-like in nature.
distinctions between, say, two items being equally admirable as opposed to them being on a par with regard to admirability. However, unlike preferences, emotions are essentially *monadic* in nature. While preferences are intrinsically comparative, the same cannot be said about feelings. Or so it seems, at least. It is therefore unclear whether emotional attitudes can provide a suitable basis for an account of value relations.

I think such an account can be provided. As will be seen, the emotion-based modeling importantly differs from the preference-based model. Nonetheless, the two models give rise to isomorphic taxonomies of value relations.

For the sake of definiteness, let’s focus on just one emotion-based value: admirability. I shall also assume, for simplicity, that the domain of items consists of objects that all have features that make them more or less admirable. A more general account would also include items that do not deserve to be admired and items that cannot be admired, such as, say, facts or states of affairs. (You can admire a person, say, for her courage or her wit, but you cannot admire the fact that a given person is courageous or witty.) I want to provide an account of different admirability relationships that can obtain in such a relatively restricted domain. Note, however, that the domain in question might contain items that belong to radically different ontological categories: Thus, we can talk about admirable persons, admirable character features, admirable works of art, etc. All of them can belong to the domain we focus on.

The main idea is simple and shows much similarity to Gert’s original proposal. His model was constructed in terms of permissible strengths of preference. Our model will work with permissible *degrees of admiration*. Thus, *x* is more admirable than *y* if and only if it is required to admire *x* to a greater degree than *y*. They are equally admirable if and only if it is required to admire them to the same degree. They are on a par with regard to admirability if and only if it is permissible to admire *x* to a greater degree than *y* and also permissible to admire *y* to a greater degree than *x*. They are incomparable with regard to admirability if and only if it is impermissible to admire them to the same degree or to admire one to a greater degree than the other. And so on.

How are we to make this idea more precise without getting into the same trouble as Gert with his interval approach? The source of these difficulties was that the interval model involved treating each item separately. In the intersection model, we took a holistic approach instead and considered the permissible orderings of the item domain as a whole. We should now proceed in the same way. To do so, we shall work with the class P of permissible admiration profiles, just as the intersection model assumes the class K of permissible preference orderings.

What do I mean by an admiration profile? Intuitively, it is a specification of a possible state in which different items in the domain are admired to varying degrees. Formally, it is a possible assignment of degrees of admiration to the items in the domain: one degree for each item. Some admiration profiles are, we assume, permissible, while other such profiles are impermissible. The ones that are permissible form the class P.

To prepare for a more precise definition of a profile, let (D, \succ) be a structure that consists of a set D of possible degrees, or levels, of admiration that are ordered by a relation \succ. For all degrees d and d' in D, $d \succ d'$ holds if and only if d is a higher degree
than \(d' \). We assume that \(\succ \) is asymmetric and transitive, but it need not be a linear ordering. I.e., we do not presuppose that for all degrees \(d \) and \(d' \) in \(D \), if \(d \neq d' \), then either \(d \succ d' \) or \(d' \succ d \). This means we allow for the possibility that some levels of admiration might be mutually incommensurable.

An admiration profile is a function that to every item in a given item domain assigns some admiration level in \(D \). \(P \) is a certain class of such functions – it is the class of permissible profiles.\(^{24}\) I shall refer to different admiration profiles as \(p, p' \), etc. To say that items \(x \) and \(y \) are equally admired in a profile \(p \) means that \(p(x) = p(y) \). If \(p(x) \succ p(y) \), then \(x \) is more admired than \(y \) in \(p \). The admiration levels for \(x \) and \(y \) in \(p \) are incommensurable if \(p(x) \neq p(y) \), but \(p(x) \ntriangleright p(y) \) and \(p(y) \ntriangleright p(x) \). If \(x \) and \(y \) belong to different ontological categories, say, if \(x \) is a person and \(y \) is a character feature, it is plausible to suppose that it won’t be possible to commensurate the degrees to which they are admired: Do we admire Mozart more than we admire courage? Or do we admire them equally? None of these alternatives seems right. But incommensurability in admiration might also be possible for items within one and the same ontological category. Think of the admiration we have for courage and for artistic talent. Is the former stronger than the latter or are they equally strong? Possibly, neither is the case.

We now have all we need to define different admirability relations.\(^{25}\) Thus,

- \((B^A)\) \(x \) is more admirable than \(y \) if and only if \(p(x) \succ p(y) \), for every \(p \in P \).
- \((E^A)\) \(x \) is equally as admirable as \(y \) if and only if \(p(x) = p(y) \), for every \(p \in P \).
- \((P^A)\) \(x \) and \(y \) are on a par in regard to admirability if and only for some \(p, p' \in P \), \(p(x) \succ p(y) \) and \(p'(y) \succ p'(x) \).
- \((I^A)\) \(x \) and \(y \) are incomparable in regard to admirability if and only if for every \(p \in P \), \(p(x) \neq p(y) \) and neither \(p(x) \succ p(y) \) nor \(p(y) \succ p(x) \).

\(^{24}\) If the domain were allowed to contain items that cannot be admired, admiration profiles would have to be partial functions, which are left undefined for these items. If we allowed for items that can be but do not deserve to be admired, then some profiles would assign admiration levels to these items, but none of profiles in \(P \) would do so. Extending the domain in these ways would make the taxonomy of admirability relations more complicated.

\(^{25}\) Actually, we have more than we need. It is easy to see that \(P \) can contain several distinct profiles that induce the same admiration ordering on the item domain. In other words, it can contain profiles \(p \) and \(p' \) such that \(p \neq p' \), but for all items \(x \) and \(y \), (i) \(p(x) \succ p(y) \) if and only if \(p'(x) \succ p'(y) \), and (ii) \(p(x) = p(y) \) if and only if \(p(x) = p(y) \). Example: Suppose \(D \) contains degrees \(d_1, d_2, \ldots, d_n \) that are linearly ordered by \(\succ \) with \(d_1 \) at the top and \(d_n \) at the bottom. Let the domain consist of just three items, \(x \), \(y \) and \(z \). Suppose that one profile, \(p \), assigns \(d_1 \), \(d_2 \) and \(d_3 \) to \(x \), \(y \) and \(z \), respectively, while the other, \(p' \), assigns to these items degrees \(d_n, d_2 \) and \(d_3 \), in that order. In \(p' \) each item is less admired than in \(p \), but both profiles induce the same admiration ordering of the items. As we shall see, for our taxonomy of admirability relations we only need to know what admiration orderings are induced by permissible admiration profiles, which means that the specification of \(P \) provides us with more information than is necessary.
(WI^A) \(x \) and \(y \) are weakly incomparable in regard to admirability if and only if for some \(p \in P \), \(p(x) \neq p(y) \) and neither \(p(x) \succ p(y) \) nor \(p(y) \succ p(x) \).

And so on.

We can now present the taxonomy of admirability relations. In the table below, each column specifies one type of such a relation, by enumerating all permissible admiration relationships with regard to a given pair of items. There are four such relationships to consider: being more admired (\(\succ \)), being equally admired (\(\approx \)), being less admired (\(\prec \)), being incommensurable in regard to admiration (\(/ \)). There is a plus sign in a column for every admiration relationship that is permissible in a given value type. As before, there has to be at least one plus sign in each column, which means there are fifteen columns – fifteen atomic types of admirability relations. Groups of atomic types, such as parity (types 6 – 9) and weak incomparability (types 1 -14) form types in a broader sense. The taxonomy is exactly isomorphic to the one we had before.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\succ)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(\approx)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(\prec)</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(/)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>(B^A)</td>
<td></td>
</tr>
<tr>
<td>(E^A)</td>
<td></td>
</tr>
<tr>
<td>(W^A)</td>
<td></td>
</tr>
<tr>
<td>(P^A)</td>
<td></td>
</tr>
<tr>
<td>(P^A)</td>
<td></td>
</tr>
<tr>
<td>(P^A)</td>
<td></td>
</tr>
<tr>
<td>(P^A)</td>
<td></td>
</tr>
<tr>
<td>(I^A)</td>
<td></td>
</tr>
</tbody>
</table>
appearances might well be misleading and we might well be aware of them being so. This suffices to disarm the objection, as far as I can tell.

To conclude, we have shown how the analysis of value in terms of fitting proattitudes can be usefully employed to set up a rich taxonomy of value relations. The large expressive power of this approach primarily depends on the introduction of two levels of normativity: the level of requiredness and the levels of permission. The modelings we have used differ for fitting preferences and for fitting emotions. But these differences do not matter much: The resulting taxonomies are essentially analogous.

References

In fact, in the case of emotions, the objection could be met even without giving up on the ‘judgmentalist’ view: Even if a judgment of admirability were considered to be an essential component of admiration, this judgment as such is not comparative. Consequently, one might still deny that an item that is more admired must be judged to be more admirable. The difference in the degrees of admiration can instead be accounted for in terms of the greater intensity of feeling, rather than in terms of some difference in the judgmental component.

