Participants know best: The effect of calibration method on data quality

Holmqvist, Kenneth; Nyström, Marcus; Andersson, Richard; van de Weijer, Joost

Published in: [Publication information missing]

2011

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
1. Automatic calibration
 Software decides when eye feature samples are recorded.

2. Operator-controlled
 The operator clicks a button to record eye feature samples.

3. Participant-controlled: The participant clicks a button to record samples.

Challenges
- The participant must look straight at the calibration target, and keep the eye still. Also, optical conditions may confuse gaze the estimation algorithm.
- The participant may move his eye during calibration for a variety of reasons:
 - Anticipation (looking too ahead too)
 - Square-wave jerks, glissades, blinks
 - Distraction
 - Poor task instructions
 - Etc.

Gaze estimation may be faltering due to
- Reflection in glasses
- Split corneal reflection in lenses
- The corneal reflection is in the sclera
- The pupil or corneal reflection are covered by eyelids or lashes
- Etc.

Data recording
- Four stations with identical SMI HiSpeed 500 Hz binocular
- Six operators (five experienced, one novice)
- 149 non-prescreened students of economics
- Two recordings: Just after calibration, and after 15 minutes of reading.

Automatic (44), Operator-controlled (62), Participant-controlled (43)
- Eye-lashes directed down (8), forward (32), up (109)
- Eye cleft: medium (13), narrow (3), open (133)
- Eye colour: blue (112), brown (35), quite other (2)

Method

Results

Accuracy (offset) is predicted by:
- Participant-controlled: -0.1102
- Operator-controlled: -0.072722
- Target placed low: -0.0001
- Target placed high: 0.0000
- Participant-controlled: -0.0001
- Participant-controlled: -0.0001
- Participant-controlled: -0.0001
- Calibration method
- Etc.

Precision (RMS) is predicted by:
- Participant-controlled: -0.003247
- Operator-controlled: -0.001872
- Calibration method
- Etc.

Amount of data loss is predicted by:
- Participant-controlled: -0.002340
- Operator-controlled: -0.000187
- Calibration method
- Etc.

Accuracy:
- Participant-controlled calibration best
- Higher position on monitor better
- Glasses make accuracy worse
- Open eye physiology better

Precision decreases over time
- Participant-controlled calibration.
- Open eye physiology.
- Glasses make precision worse

RESULTS

Accuracy is better with experienced operators

Dominant eye (Miles test) gives better accuracy

<table>
<thead>
<tr>
<th>Operator</th>
<th>No difference between L and R eye.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left dominant (LD) and right dominant (RD) eye give better accuracy than non-dominant eyes.</td>
</tr>
<tr>
<td>2</td>
<td>Left dominant (LD) and right dominant (RD) eye give better accuracy than non-dominant eyes.</td>
</tr>
<tr>
<td>3</td>
<td>Left dominant (LD) and right dominant (RD) eye give better accuracy than non-dominant eyes.</td>
</tr>
<tr>
<td>4</td>
<td>Left dominant (LD) and right dominant (RD) eye give better accuracy than non-dominant eyes.</td>
</tr>
<tr>
<td>5</td>
<td>Left dominant (LD) and right dominant (RD) eye give better accuracy than non-dominant eyes.</td>
</tr>
<tr>
<td>6</td>
<td>Left dominant (LD) and right dominant (RD) eye give better accuracy than non-dominant eyes.</td>
</tr>
</tbody>
</table>

Data loss is recorded:
- Participant-controlled calibration.
- Open eye physiology.
- Glasses make data loss worse
- Lenses make data loss worse

Data loss increases over time

Histograms over all data

<table>
<thead>
<tr>
<th>Participants know best – the effect of calibration method on data quality</th>
</tr>
</thead>
</table>