An Eye Tracking Study of Swedish Filler-Gap Dependencies: Processing Relative Clause Extractions

Tutunjian, Damon; Heinat, Fredrik; Klingvall, Eva; Wiklund, Anna-Lena

2015

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
An eye-tracking study of Swedish filler-gap dependencies: Processing relative clause extractions

Damon Tutunjian*, Fredrik Heinati**, Eva Klingvall*, and Anna-Lena Wiklund*

Lund University* and Linnaeus University**
damon.tutunjian@english.lu.se, fredrik.heinati@lnu.se, eva.klingvall@englund.lu.se, anna-lena.wiklund@lunduniv.lu.se

The second version of this page is available online at the Linguistics and Language Research website. Lund University Press. Published 2017.

Introduction

Complex noun phrases involving relative clauses (1) are standardly treated as instances of “strong islands” structural configurations into which a filler-gap dependency (FGD) cannot be formed between the filler (those kinds of flowers) and the gap (3) (Ross 1967, Den Dikken & Szabolcsi 2002). This constraint is widely assumed to be universal.

Unexpectedly, Swedish and the other Mainland Scandinavian languages allow relative clause extractions (RCEs) (2) (Engdahl & Ejerhed, 1982; Evert-Eriksson, 1985), thus presenting a challenge to the universality of island constraints.

Existing accounts for the Swedish data

- Discourse-organizational factors (Evert-Eriksson & Lapin, 1979)
- Island oblivion by way of covert resumption (Cirque, 1989)
- Structural reanalysis during parsing (Kush et al., 2013)

Unfortunately, none of these accounts stands up under closer scrutiny (see Christensen & Nyvad, 2014; Engdahl, 1997; Heinitz & Wiklund, 2015; Lindahl, 2015; Müller, 2015). Thus, what drives the apparent fidelcy of Swedish RCEs remains undetermined.

Approaching the question via processing

- No on-line processing data exists for Swedish.
- Not clear whether processing patterns track intuitive well-formedness.

First step:

- Look for basic differences in processing between Swedish RCEs and other FGDs at the embedded verb (tvättade) and the following PP (in man nälld).
- Participants hear a series of digits (3-8 infinite set size) and then enter them on a computer keyboard in reverse.

Second step:

- Two studies suggest that in accessibility judgments and in online processing, only non-islands should show any modulating effects from plausibility and working memory on any primary manipulation.
- Sprague et al. (2012) found no evidence that accessibility-based island-effects show any modulation from individual differences in general processing resource capacity, as measured via two Working Memory Span (WM) tasks and grammatically judgment data (cf. Hofmeister & Sag, 2010).
- Traxler and Pickering (1996) demonstrated via eye-tracking that manipulations to the plausibility of a filler as a continuation of a verb only affected integration for non-island structures, with no differences being found for island structures.

If correct, the presence of an interaction between structural and non-structural factors on Swedish RCEs could then serve as a positive heuristic for non-island status. This would help to confirm that processing of such structures is in-line with their intuitive acceptability.

Research goals and predictions

- Use eye-tracking to test whether:
 - Swedish RCEs elicit processing costs similar to loci or illict long-distance FGDs at the embedded verb (tvättade) and the following PP (in man nälld).
 - Any basic structural differences are modulated by non-structural factors (plausibility, pragmatic fit, and working memory).

Possible outcomes:

- Swedish RCEs may pattern more like non-islands, in line with their intuitive acceptability. Such a finding would leave us with at least two possible interpretations:
 - Swedish RCEs do not involve island structures, and thus a structural account is still needed.
 - True variation exists in island constraints.
- Swedish RCEs, although intuitively acceptable will pattern more like island structures. Such a finding would disfavor “deep variation” in the island constraints themselves (see Phillips 2013).

Method

Eyetracking While Reading (Eyelink 1000 tower mount)

Reverse Digit Span (DS) (adapted into Swedish from MacWhinney et al., 2001). Participants hear a series of digits (3-8 infinite set size) and then enter them on a computer keyboard in reverse.

Automated O-span task (OS) (adapted from Swedish from Unsworth, et al., 2005). Mouse-driven recall task. Participants complete three interlaced sets: math operation and letter recall, each set size (3-7 count). Total of 75 letters and 75 math problems.

Participants:

48 native Swedish speakers

Materials

Eighty longest-distance FGD sentence items (constructed using the Korp corpus), each appearing in four structural variants (Structure) (3-6) and six distractor items rotated over four lists.

Existing effects for Swedish RCEs do not involve island structures, and thus non-island effects show any modulation from individual variables in syntax.

Conclusions

Early measures:

- RCE and TCE show similar facilitation relative to nRCE in early measures (First Fixation and Gaze Duration) at the verb (Region 1). This similarity was also present in one early measure (Gaze Duration) at the PP (Region 2). In Region 1, RCE also showed additional facilitation against the pRCE control as OS and Prag increased.

Interpretation: RCEs are processed more similarly to TCEs and are modulated by non-structural factors. They thus exhibit non-island like behavior during the first stages of filler-gap integration.

Late measures:

- For both late measures of processing in Region 1, and for Total Durations in Region 2, RCEs were processed with more ease than nRCEs, patterning more similarly to TCEs as both OS and Prag increased. In Region 1 Total Durations, nRCE also showed some facilitation against the pRCE control as Prag increased, but this could just be reflective of a late repair mechanism.

Interpretation: Swedish RCEs are processed more similarly to non-island TCEs during late stages of integration.

Summary:

- RCEs appear to be easier to process than nRCEs. Facilitation is dependent in part on non-structural factors (working memory span and pragmatic fit).
- Our study thus provides novel evidence that Swedish RCEs are not processed like syntactic islands, in line with offline intuitions.

References