An Eye Tracking Study of Swedish Filler-Gap Dependencies: Processing Relative Clause Extractions

Tutunjian, Damon; Heinat, Fredrik; Klingvall, Eva; Wiklund, Anna-Lena

2015

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
An eye-tracking study of Swedish filler-gap dependencies: Processing relative clause extractions

Damon Tutunjian*, Fredrik Heinit**, Eva Klingvall*, and Anna-LenaWiklund*

Lund University* and Linnaeus University**
damon.tutunjian@engliy.lu.se, fredrik.heinit@lnu.se, eva.klingvall@engliy.lu.se, anna-lena.wiklund@nordlund.lu.se

Introduction

Complex noun phrases involving relative clauses (1) are standardly treated as instances of “strong islands” structural configurations into which a filler-gap dependency (FGD) cannot be formed between the filler (those kinds of flowers) and the gap (3) (Ross, 1967, den Dikken & Szabolcs, 2002). This constraint is widely assumed to be universal.

Unexpectedly, Swedish and the other Mainland Scandinavian languages allow relative clause extractions (RCEs) (2) (Engdahl & Ephrath, 1982; Eretich-Shir, 1975), thus presenting a challenge to the universality of island constraints.

Existing accounts for the Swedish data

1. Discourse-organizational factors (Eretich-Shir & Lapin, 1979)
2. Island violation by way of covert resumption (Cirque, 1986)
3. Structural reanalysis during parsing (Kush et al., 2013)

Unfortunately, none of these accounts stands up under closer scrutiny (see Christensen & Nyvad, 2014; Engdahl, 1997; Heinit & Wiklund, 2015; Lindahl, 2015; Muller, 2015). Thus, what does the apparent felicity of Swedish RCEs remain undetermined.

Approaching the question via processing

No on-line processing data exists for Swedish.
Not clear whether processing patterns track intuitive well-formedness.

First step:
look for basic differences in processing between Swedish RCEs and other FGDs at the embedded verb (initiated) and the following PP region (functionless) (see examples 3-4) where integration is presumed to occur, while controlling for the possible influence of non-structural factors (e.g., working memory), which might affect the processing of FGDs.

Second step:
Two studies suggest that in acceptability judgments and in online processing, only non-islands should show any modulating effects from plausibility and working memory on any primary manipulation.
Sprague et al. (2012) found no evidence that acceptability-based island-effects show any modulating factor from individual differences in general processing resources capacity, as measured via two Working Memory Span (WM) tasks and grammaticality judgment data (cf. Hofmeister & Sag, 2010).
Trasker and Pickering (1996) demonstrated via eye-tracking that manipulations to the plausibility of a filler as a continuation of a verb only affected integration for non-island structures, with no differences being found for island structures.

If correct, the presence of an interaction between structural and non-structural factors on Swedish RCEs could then serve as a positive heuristic for non-island status. This would help to confirm that processing of such structures is in-line with their intuitive acceptability.

Research goals and predictions

Use eye-tracking to test whether:
• Swedish RCEs elicit processing costs similar to licit or illicit long-distance FGDs at the embedded verb (initiated) and the following PP region (functionless).
• Any basic structural differences are modulated by non-structural factors (e.g., pragmatic function, working memory).

Possible outcomes:
• Swedish RCEs will pattern more like non-islands, in line with their intuitive acceptability. Such a finding would leave us with at least two possible interpretations:
 • Swedish RCEs do not involve island structures, and thus a structural account is still needed.
 • True variation exists in island constraints.
• Swedish RCEs, although intuitively acceptable will pattern more like island structures. Such a finding would disfavor “deep variation” in the island constraints themselves (see Phillips, 2013).

Method

Eye-tracking While Reading (Eyelink 1000 tower mount)

Reverse Digit Span (DS) (adapted into Swedish from MacWhirenthy et al., 2001). Participants hear a series of digits (3-5 digit set size) and then enter them on a computer keyboard in reverse.

Automated O-span task (OS) (adapted into Swedish from Unsworth et al., 2005). Mouse-driven recall task. Participants complete three interleaved sets: math operation and letter recall, each set size (3-7 count). Total of 75 letters and 75 math problems.

Participants
48 native Swedish speakers

Eyetracking while reading experiment

Materials
Eighty long-distance FGD sentence items (constructed using the Korp corpus), each appearing in four structural variants (Structure) (3-6) and sixty distractor items rotated over four lists.

Method

Eye-tracking While Reading (Eyelink 1000 tower mount)

Reverse Digit Span (DS) (adapted into Swedish from MacWhirenthy et al., 2001). Participants hear a series of digits (3-5 infinite set size) and then enter them on a computer keyboard in reverse.

Automated O-span task (OS) (adapted into Swedish from Unsworth et al., 2005). Mouse-driven recall task. Participants complete three interleaved sets: math operation and letter recall, each set size (3-7 count). Total of 75 letters and 75 math problems.

Participants
48 native Swedish speakers

Analysis
Linear mixed models (Bates et al., 2014) to analyze log residualized fixations durations in two regions (verb and PP) for four eye-tracking measures: First Fixation Duration, Gaze Duration, Regression Path Duration (note: this measure did not produce interpretable results), and Total Duration, as well as four non-structural predictors. Translational probability of embedded verb and filler (Free). Pragmatic coherence/contextual fit rating for non-extracted versions of each sentence (7-point scale; 24 participants) (Prag). O-span (OS); and Reverse digspan (DS)

Results

Conclusions

Early measures:
• RCE and TCE show similar facilitation relative to nRCE in early measures (First Fixation and Gaze Duration) at the verb (Region 1). This similarity was also present in one early measure (Gaze Duration) at the PP (Region 2). In Region 1, RCE also showed additional facilitation against the prCCE control as OS and Prag increased.

Interpretation: RCEs are processed more similarly to TCEs and are modulated by non-structural factors. They thus exhibit non-island like behavior during the first stages of filler-gap integration.

Late measures:
• For both late measures of processing in Region 1, and for Total Durations in Region 2, RCEs were processed with more ease than nRCEs, patterning more similarly to TCEs as both OS and Prag increased. In Region 1 Total Durations, nRCE also showed some facilitation against the prCCE control as Prag increased, but this could just be reflective of a late repair mechanism.

Interpretation: Swedish RCEs are processed more similarly to non-island TCEs during late stages of integration.

Summary:
• RCEs appear to be easier to process than nRCEs. Facilitation is dependent in part on non-structural factors (working memory span and pragmatic fit).
• Our study thus provides novel evidence that Swedish RCEs are not processed like syntactic islands, in line with offline intuitions.

References

Acknowledgements

This research was conducted at the Lund University Humanities Lab and was funded by a grant from the Crafoord Foundation and the Bank of Sweden Tercentenary Foundation. We thank Joost van de Weijer for his assistance with our statistical analysis.