What's in an EEM? : Molecular signatures associated with dissolved organic fluorophores

Stubbins, Aron; del Giorgio, Paul A.; Berggren, Martin; Lapierre, Jean-François; Dittmar, Thorsten

2013

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

ABSTRACT

Excitation emission matrix fluorescence spectra are now widely used to provide a rapid, inexpensive assessment of dissolved organic matter quality. Yet little is known about the molecules that track these fluorophores in the environment. Here we present patterns of correlations between fluorescent components and the thousands of dissolved organic molecular formulas resolved by Fourier transform ion cyclotron mass spectrometry from a suite of boreal river samples. The mass spectral peaks correlating with specific fluorophores have distinct, organized elemental stoichiometries. For instance, the group or cohort of molecular peaks correlating with protein-like fluorophores was enriched in nitrogen, whereas the cohort correlating with humic-like fluorescence was overwhelmingly comprised of CHO-only molecules. Not all mass spectral peaks correlating with a fluorophore were fluorescent, i.e. not all were aromatic, indicating that EEM peaks also track molecules beyond the fluorescent DOM pool. Therefore the correlations between mass spectral and fluorescent peaks are presumably driven by similarities in the sources and sinks of the molecular peaks that track a specific fluorophore in the environment.